Advertisement

Modeling Incast and its Empirical Validation

Chapter
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)

Abstract

To substantially solve TCP Incast at low cost, we first need to understand the reasons behind its throughput collapse. Traditionally, simulation and implementation/measurement have been tools of choice for examining the performance of various aspects of TCP. In this chapter we develop a simple analytic characterization of the steady state throughput of multiple TCP flows, as a function of loss rate and round trip time under many-to-one Incast communication pattern.

References

  1. 1.
    T. Berners-Lee, R. Fielding, H. Frystyk, Hypertext Transfer Protocol—HTTP/1.0, RFC 1945 (Informational), Internet Engineering Task Force, May 1996. http://www.ietf.org/rfc/rfc1945.txt
  2. 2.
    J. Postel, J. Reynolds, File Transfer Protocol, RFC 959 (Standard), Internet Engineering Task Force, Oct. 1985, updated by RFCs 2228, 2640, 2773, 3659, 5797. http://www.ietf.org/rfc/rfc959.txt
  3. 3.
    J. Postel, Simple Mail Transfer Protocol, RFC 821 (Standard), Internet Engineering Task Force, Aug. 1982, obsoleted by RFC 2821. http://www.ietf.org/rfc/rfc821.txt
  4. 4.
    C. Feather, Network News Transfer Protocol (NNTP), RFC 3977 (Proposed Standard), Internet Engineering Task Force, Oct. 2006, updated by RFC 6048. http://www.ietf.org/rfc/rfc3977.txt
  5. 5.
    T. Ylonen, C. Lonvick, The Secure Shell (SSH) Protocol Architecture, RFC 4251 (Proposed Standard), Internet Engineering Task Force, Jan. 2006. http://www.ietf.org/rfc/rfc4251.txt
  6. 6.
    T. Ylonen, C. Lonvick, The Secure Shell (SSH) Authentication Protocol, RFC 4252 (Proposed Standard), Internet Engineering Task Force, Jan. 2006. http://www.ietf.org/rfc/rfc4252.txt
  7. 7.
    T. Ylonen, C. Lonvick, The Secure Shell (SSH) Transport Layer Protocol, RFC 4253 (Proposed Standard), Internet Engineering Task Force, Jan. 2006. http://www.ietf.org/rfc/rfc4253.txt
  8. 8.
    T. Ylonen, C. Lonvick, The Secure Shell (SSH) Connection Protocol, RFC 4254 (Proposed Standard), Internet Engineering Task Force, Jan. 2006. http://www.ietf.org/rfc/rfc4254.txt
  9. 9.
    J. Schlyter, W. Griffin, Using DNS to Securely Publish Secure Shell (SSH) Key Fingerprints, RFC 4255 (Proposed Standard), Internet Engineering Task Force, Jan. 2006. http://www.ietf.org/rfc/rfc4255.txt
  10. 10.
    F. Cusack, M. Forssen, Generic Message Exchange Authentication for the Secure Shell Protocol (SSH), RFC 4256 (Proposed Standard), Internet Engineering Task Force, Jan. 2006. http://www.ietf.org/rfc/rfc4256.txt
  11. 11.
    K. Thompson, G.J. Miller, R. Wilder, Wide-area internet traffic patterns and characteristics, Netwrk. Mag. of Global Internetwkg 11(6), 10–23 (1997). http://dx.doi.org/10.1109/65.642356
  12. 12.
    J. Postel, User Datagram Protocol, RFC 768 (Standard), Internet Engineering Task Force, Aug. 1980. http://www.ietf.org/rfc/rfc768.txt
  13. 13.
    S. McCreary, k. claffy, Trends in wide area IP traffic patterns—a view from Ames internet exchange, in ITC Specialist Seminar, Monterey, Sep 2000Google Scholar
  14. 14.
    R. Chow, Y.-C. Chow, Distributed Operating Systems and Algorithms (Addison-Wesley Longman Publishing Co., Inc., Boston, 1997)Google Scholar
  15. 15.
    A. Silberschatz, P.B. Galvin, G. Gagne, Operating System Concepts, 6th edn. (John Wiley & Sons, Inc., New York, 2001)Google Scholar
  16. 16.
    G.F. Pfister, In Search of Clusters, 2nd edn. (Prentice-Hall, Inc., Upper Saddle River, 1998)Google Scholar
  17. 17.
    R. Buyya, High Performance Cluster Computing: Architectures and Systems (Prentice Hall PTR, Upper Saddle River, 1999)Google Scholar
  18. 18.
    D. DeWitt, J. Gray, Parallel database systems: the future of high performance database systems, Commun. ACM 35(6), 85–98 (1992). http://doi.acm.org/10.1145/129888.129894
  19. 19.
    K. Keeton, D. Beyer, E. Brau, A. Merchant, C. Santos, A. Zhang, On the road to recovery: restoring data after disasters, in Proceedings of the 1st ACM SIGOPS/EuroSys European Conference on Computer Systems 2006, ser. EuroSys ’06. New York: ACM, 2006, pp. 235–248. http://doi.acm.org/10.1145/1217935.1217958
  20. 20.
    K. Keeton, C. Santos, D. Beyer, J. Chase, J. Wilkes, Designing for disasters, in Proceedings of the 3rd USENIX Conference on File and Storage Technologies, ser. FAST’04. Berkeley, CA, USA: USENIX Association, 2004, pp. 5–5. http://dl.acm.org/citation.cfm?id=1973374.1973379
  21. 21.
    IEEE Standard for Information Technology—Telecommunications and Information Exchange Between Systems—Local and Metropolitan Area Networks—Specific Requirements—Part 3: Carrier Sense Multiple Access With Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications, LAN/MAN Standards Committee, New York, 2008. http://standards.ieee.org/about/get/802/802.3.html
  22. 22.
    A. Phanishayee, E. Krevat, V. Vasudevan, D.G. Andersen, G.R. Ganger, G.A. Gibson, S. Seshan, Measurement and analysis of TCP throughput collapse in cluster-based storage systems, in Proceedings of the 6th USENIX Conference on File and Storage Technologies, ser. FAST’08. Berkeley: USENIX Association, 2008, pp. 12:1–12:14. http://dl.acm.org/citation.cfm?id=1364813.1364825
  23. 23.
    V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D.G. Andersen, G.R. Ganger, G.A. Gibson, B. Mueller, Safe and effective fine-grained TCP retransmissions for datacenter communication, in Proceedings of the ACM SIGCOMM 2009 Conference on Data Communication, ser. SIGCOMM ’09. New York: ACM, 2009, pp. 303–314. http://doi.acm.org/10.1145/1592568.1592604
  24. 24.
    V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D.G. Andersen, G. R. Ganger, G.A. Gibson, A (In)cast of thousands: scaling datacenter TCP to kiloservers and gigabits, Technical Report CMUPDL-09-101, Carnegie Mellon University Parallel Data Lab, Feb 2009. http://www.pdl.cmu.edu/PDL-FTP/Storage/CMU-PDL-09-101.pdf
  25. 25.
    Y. Chen, R. Griffith, J. Liu, R.H. Katz, A.D. Joseph, Understanding TCP incast throughput collapse in datacenter networks, in Proceedings of the 1st ACM Workshop on Research on Enterprise Networking, ser. WREN ’09. New York: ACM, 2009, pp. 73–82. http://doi.acm.org/10.1145/1592681.1592693
  26. 26.
    G.A. Gibson, D.F. Nagle, K. Amiri, J. Butler, F.W. Chang, H. Gobioff, C. Hardin, E. Riedel, D. Rochberg, J. Zelenka, A cost-effective, high-bandwidth storage architecture, in Proceedings of the Eighth International Conference on Architectural Support for Programming languages and Operating Systems, ser. ASPLOS-VIII. New York: ACM, 1998, pp. 92–103. http://doi.acm.org/10.1145/291069.291029
  27. 27.
    D. Nagle, D. Serenyi, A. Matthews, The panasas active scale storage cluster: delivering scalable high bandwidth storage, in Proceedings of the 2004 ACM/IEEE Conference on Supercomputing, ser. SC ’04. Washington, DC, USA: IEEE Computer Society, 2004, pp. 53-. http://dx.doi.org/10.1109/SC.2004.57
  28. 28.
    S. Ghemawat, H. Gobioff, S.-T. Leung, The Google file system, SIGOPS Oper. Syst. Rev 37(5), 29–43 (2003). http://doi.acm.org/10.1145/1165389.945450 Google Scholar
  29. 29.
    M. Abd-El-Malek, W.V. Courtright, II, C. Cranor, G.R. Ganger, J. Hendricks, A.J. Klosterman, M. Mesnier, M. Prasad, B. Salmon, R.R. Sambasivan, S. Sinnamohideen, J.D. Strunk, E. Thereska, M. Wachs, J.J. Wylie, Ursa minor: versatile cluster-based storage, in Proceedings of the 4th Conference on USENIX Conference on File and Storage Technologies - Volume 4, ser. FAST’05. Berkeley: USENIX Association, 2005, pp. 5–5. http://dl.acm.org/citation.cfm?id=1251028.1251033
  30. 30.
    Y. Cheng, C. Qin, F. Rusu, GLADE: big data analytics made easy, in Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, ser. SIGMOD ’12. New York: ACM, 2012, pp. 697–700. http://doi.acm.org/10.1145/2213836.2213936
  31. 31.
    K. Bajda-Pawlikowski, D.J. Abadi, A. Silberschatz, E. Paulson, Efficient processing of data warehousing queries in a split execution environment, in Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data, ser. SIGMOD ’11. New York: ACM, 2011, pp. 1165–1176. http://doi.acm.org/10.1145/1989323.1989447
  32. 32.
    Y. Huai, R. Lee, S. Zhang, C. H. Xia, X. Zhang, DOT: a matrix model for analyzing, optimizing and deploying software for big data analytics in distributed systems, in Proceedings of the 2nd ACM Symposium on Cloud Computing, ser. SOCC ’11. New York: ACM, 2011, pp. 4:1–4:14. http://doi.acm.org/10.1145/2038916.2038920
  33. 33.
    F.J. Alexander, A. Hoisie, A.S. Szalay, Big data [Guest editorial]. Comput. Sci. Eng. 13(6), 10–13 (2011)CrossRefGoogle Scholar
  34. 34.
    J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters, Commun. ACM 51(1), 107–113 (2008). http://doi.acm.org/10.1145/1327452.1327492
  35. 35.
    K. Shvachko, H. Kuang, S. Radia, R. Chansler, The hadoop distributed file system, in Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), ser. MSST ’10. Washington: IEEE Computer Society, 2010, pp. 1–10. http://dx.doi.org/10.1109/MSST.2010.5496972
  36. 36.
    J. Padhye, V. Firoiu, D. Towsley, J. Kurose, Modeling TCP throughput: a simple model and its empirical validation, in Proceedings of the ACM SIGCOMM ’98 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication. New York: ACM, 1998, pp. 303–314. http://doi.acm.org/10.1145/285237.285291
  37. 37.
    N. Parvez, A. Mahanti, C. Williamson, An analytic throughput model for TCP NewReno, IEEE/ACM Trans. Netw 18(2), 448–461 (2010). http://dx.doi.org/10.1109/TNET.2009.2030889
  38. 38.
    E. Altman, K. Avrachenkov, C. Barakat, A stochastic model of TCP/IP with stationary random losses, IEEE/ACM Trans. Netw 13(2), 356–369 (2005). http://dx.doi.org/10.1109/TNET.2005.845536
  39. 39.
    M. Goyal, R. Gurin, R. Rajan, Predicting TCP throughput from non-invasive network sampling, in INFOCOM, 2002Google Scholar
  40. 40.
    A. Kumar, Comparative performance analysis of versions of TCP in a local network with a lossy link, IEEE/ACM Trans. Netw 6(4), 485–498 (1998). http://dx.doi.org/10.1109/90.720921
  41. 41.
    C. Casetti, M. Meo, A new approach to model the stationary behavior of TCP connections, in INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, vol. 1 (2000), pp. 367–375Google Scholar
  42. 42.
    S. Floyd, V. Jacobson, Random early detection gateways for congestion avoidance, IEEE/ACM Trans. Netw 1(4), 397–413 (1993). http://dx.doi.org/10.1109/90.251892
  43. 43.
    K. Fall, S. Floyd, Simulation-based comparisons of Tahoe, Reno and SACK TCP, SIGCOMM Comput. Commun. Rev 26(3), 5–21 (1996). http://doi.acm.org/10.1145/235160.235162
  44. 44.
    S. Mccanne, S. Floyd, K. Fall, ns2 (network simulator 2), http://www-nrg.ee.lbl.gov/ns/. http://www.isi.edu/nsnam/ns/.
  45. 45.
    K. Varadhan, K. Fall, The ns Manual (formerly ns Notes and Documentation), The VINT Project, A Collaboration between researchers at UC Berkeley, LBL, USC/ISI, and Xerox PARC, Nov 2011. http://www.isi.edu/nsnam/ns/doc/ns_doc.pdf

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Electrical and Computer EngineeringAuburn UniversityAuburnUSA
  2. 2.Auburn UniversityAuburnUSA

Personalised recommendations