Dimension Reduction for Tensor Classification

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 55)


This article develops a sufficient dimension reduction method for high dimensional regression with tensor predictors, which extends the conventional vector-based dimension reduction model. It proposes a tensor dimension reduction model that assumes that a response depends on some low-dimensional representation of tensor predictors through an unspecified link function. A sequential iterative dimension reduction algorithm (SIDRA) that effectively utilizes the tensor structure is proposed to estimate the parameters. The SIDRA generalizes the method in Zhong and Suslick (2012), which proposes an iterative estimation algorithm for matrix classification. Preliminary studies demonstrate that the tensor dimension reduction model is a rich and flexible framework for high dimensional tensor regression, and SIDRA is a powerful and computationally efficient method.


Dimension Reduction Tensor Structure Tensor Classification Misclassification Error Simple Vectorization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by one National Science Foundation grant DMS 1107029 to PZ and two National Science Foundation grant DMS 1120256 and DMS 1228288 and one National Institutes of Health grant R01 DK062777 to WZ.


  1. Carey, J. R. and K. S. Suslick (2011). Rapid identification of bacteria with a disposable colorimetric sensing array. J. Am. Chem. Soc. 133, 7571–7576.CrossRefGoogle Scholar
  2. Carey, J. R., K. S. Suslick, K. Hulkower, J. Imlay, K. Imlay, C. Ingison, J. Ponder, A. Sen, and A. Wittrig (2011). Papid identification of bacteria with a disposable colorimetric sensing array. J. Am. Chem. Soc. 133(19), 7571–7576.CrossRefGoogle Scholar
  3. Chen, C.-H. and K.-C. Li (1998). Can SIR be as popular as multiple linear regression? Statist. Sin. 8, 289–316.MATHGoogle Scholar
  4. Cook, R. D. (1996). Graphics for regressions with a binary response. J. Amer. Statist. Assoc. 91, 983–992.MathSciNetCrossRefMATHGoogle Scholar
  5. Cook, R. D. (1998). Regression Graphics: Ideas for Studying Regressions through Graphics. John Wiley & Sons.Google Scholar
  6. Cook, R. D. and S. Weisberg (1994). An Introduction to Regression Graphics. John Wiley & Sons.Google Scholar
  7. Donoho, D. L. and M. Elad (2003). Optimally sparse representation in general (nonorthogonal) dictionaries via minimization. Proc Natl Acad Sci 100(5), 2197–2202.MathSciNetCrossRefMATHGoogle Scholar
  8. Duan, N. and K.-C. Li (1991). Slicing regression: A link-free regression method. Ann. Statist. 19, 505–530.MathSciNetCrossRefMATHGoogle Scholar
  9. Ehmann, R., E. Boedeker, U. Friedrich, J. Sagert, J. Dippon, G. Friedel, and T. Walles (2012). Canine scent detection in the diagnosis of lung cancer: revisiting a puzzling phenomenon. Eur Respir J 39, 669–676.CrossRefGoogle Scholar
  10. Fan, J. and R. Li (2006). Statistical challenges with high dimensionality: Feature selection in knowledge discovery. In Proceedings of the International Congress of Mathematicians, pp. 595–622. European Mathematical Society.Google Scholar
  11. Feng, L., C. J. Musto, J. W. Kemling, S. H. Lim, W. Zhong, and K. S. Suslick (2010). Colorimetric sensor array for determination and identification of toxic industrial chemicals. Anal. Chem. 82, 9433–9440.CrossRefGoogle Scholar
  12. Harshman, R. and M. Lundy (1984). The PARAFAC model for three-way factor analysis and multidimensional scaling. In Research Methods for Multimode Data Analysis, pp. 122–215. Praeger.Google Scholar
  13. Hsing, T. and R. J. Carroll (1992). An asymptotic theory for sliced inverse regression. Ann. Statist. 20(2), 1040–1061.MathSciNetCrossRefMATHGoogle Scholar
  14. Kolda, T. and B. Bader (2009). Tensor decompositions and applications. SIAM Review 51(3), 455–500.MathSciNetCrossRefMATHGoogle Scholar
  15. Lange, K. (2010). Numerical Analysis for Statisticians (second edition). Springer.Google Scholar
  16. Li, B., M. K. Kim, and N. Altman (2010). On dimension folding of matrix or array valued statistical objects. Ann. Statist. 38(8), 1094–1121.MathSciNetCrossRefMATHGoogle Scholar
  17. Li, K.-C. (1991). Sliced inverse regression for dimension reduction. J. Amer. Statist. Assoc. 86, 316–327.MathSciNetCrossRefMATHGoogle Scholar
  18. Lim, S. H., C. J. Musto, E. Park, W. Zhong, and K. S. Suslick (2008). A colorimetric sensor array for detection and identification of sugars. Organic Letters 10, 4405–4408.CrossRefGoogle Scholar
  19. Merris, R. (1997). Multilinear Algebra. CRC Press.Google Scholar
  20. Morgan, R. (2012). Thinking outside the box about screening for ovarian cancer: The nose knows! J. Natl. Compr. Canc. Netw 10, 795–796.Google Scholar
  21. Rakow, N., A. Sen, M. Janzen, J. Ponder, and K. Suslick (2005). Molecular recognition and discrimination of amines with a colorimetric array. Angew. Chem. Int. Ed. 44, 4528–4532.CrossRefGoogle Scholar
  22. Rakow, N. A. and K. S. Suslick (2000). A colorimetric sensor array for odour visualization. Nature 406, 710–714.CrossRefGoogle Scholar
  23. Savage, N. (2012). Technology: The taste of things to come. Nature 486, S18–S19.CrossRefGoogle Scholar
  24. Smilde, A., R. Bro, and P. Geladi (2004). Multi-way Analysis with Applications in the Chemical Sciences. John Wiley & Sons.Google Scholar
  25. Tucker, L. (1951). A method for synthesis of factor analysis studies. Personnel Research Section, Report 984(Dept. of Army).Google Scholar
  26. Tucker, L. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika 31(3), 279–311.MathSciNetCrossRefGoogle Scholar
  27. Zeng, P. and Y. Zhu (2010). An integral transform method for estimating the central mean and central subspaces. J. of Multivariate Analysis 101, 271–290.MathSciNetCrossRefMATHGoogle Scholar
  28. Zhang, C., D. P. Bailey, and K. S. Suslick (2006). Colorimetric sensor arrays for the analysis of beers: a feasibility study. J. Agric. Food Chem. 54, 4925–4931.CrossRefGoogle Scholar
  29. Zhang, C. and K. Suslick (2005). A colorimetric sensor array for organics in water. J. Am. Chem. Soc. 127, 11548–11549.CrossRefGoogle Scholar
  30. Zhong, W. and K. Suslick (2012). Penalized classification for matrix predictors with application to colorimetric sensor arrays. Technometrics, accepted.Google Scholar
  31. Zhong, W., T. Zhang, Y. Zhu, and J. Liu (2012). Correlation pursuit: forward stepwise variable selection for index model. J. Roy. Statist. Soc. Ser. B 74, 849–870.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Mathematics & StatisticsAuburn UniversityAuburnUSA
  2. 2.Department of StatisticsThe University of GeorgiaAthensUSA

Personalised recommendations