Skip to main content

Integral Neutron Transport and New Computational Methods: A Review

  • Chapter
  • First Online:
Integral Methods in Science and Engineering
  • 1675 Accesses

Abstract

The neutron transport equation is the basis for the physical simulation of nuclear reactors and, in particular, for nuclear reactor core design. The present work considers the neutron transport equation in integral form, which proves very useful to highlight many interesting physical aspects of the phenomenon and also for practical applications. The basics of integral transport theory are reviewed in the first part of the work. Afterwards, the spatial second-order AN method is derived, illustrating the advantageous features of the model, and two approaches for the numerical solution of the equations are presented. Some numerical examples show the effectiveness and flexibility of the algorithms proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alcouffe, R.E., et al.: User’s Guide for TWODANT - A Code Package for Two-Dimensional, Diffusion-Accelerated, Neutral-Particle, Transport, Report LA-10049-M, Los Alamos Scientific Laboratory, Los Alamos (1990) http://epubs.siam.org/doi/abs/10.1137/0902035

  2. Askew, J.R.: A Characteristics Formulation of the Neutron Transport Equation in Complicated Geometries, Report AEEW-M 1108, United Kingdom Atomic Energy Establishment, Winfrith (1972)

    Google Scholar 

  3. Barbarino, A., Dulla, S., Ravetto, P., Mund, E.: The spectral element approach for the solution of neutron transport problems. In: International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, M&C2011, Rio de Janeiro, Brazil (2011)

    Google Scholar 

  4. Barbarino, A., Dulla, S., Ravetto, P., Mund, E.: A spectral element method for neutron transport in A N approximation; Part I. Ann. Nucl. Energ. 53, 372–380 (2013)

    Article  Google Scholar 

  5. Bell, G.I., Glasstone, S.: Nuclear Reactor Theory. Van Nostrand Reinhold, New York (1970)

    Google Scholar 

  6. Boltzmann, L.E.: Leçons sur la Théorie des Gaz. Gauthier-Villars, Paris (1902)

    Google Scholar 

  7. Brebbia, C.A., Telles, J.C.F., Wrobel, L.C.: Boundary Element Technique. Springer, Berlin (1984)

    Book  Google Scholar 

  8. Calvin, C., Nowak, D.: High performance computing in nuclear engineering. In: Cacuci, D.G. (ed.) Handbook of Nuclear Engineering, vol. II(12). Springer, New York (2010)

    Google Scholar 

  9. Canepa, S., Van Geemert, R., Porsch, D., Dulla, S., Ravetto, P.: A response matrix formulation of multidimensional transport problems. In: International Conference on the Physics of Reactors, PHYSOR’08, Interlaken, Switzerland (2008)

    Google Scholar 

  10. Carlvik, I.: A method for calculating collision probabilities in general cylindrical geometry and applications to flux distributions and Dancoff factors. In: Proceedings of the United Nations International Conference on Peaceful Uses of Atomic Energy, vol. 2, p. 255, Geneva, Switzerland (1965)

    Google Scholar 

  11. Case, K.M., Zweifel, P.F.: Linear Transport Theory. Addison-Wesley, Reading (1967)

    MATH  Google Scholar 

  12. Case, K.M., De Hoffmann, F., Placzek, G.: Introduction to the Theory of Neutron Diffusion. Los Alamos Scientific Laboratory, Los Alamos (1953)

    Google Scholar 

  13. Ciolini, R., Coppa, G.G.M., Montagnini, B., Ravetto, P.: Simplified P N and A N methods in neutron transport. Progr. Nucl. Energ. 40, 245–272 (2002)

    Article  Google Scholar 

  14. Coppa, G., Ravetto, P.: An approximate method to study the one-velocity neutron integral transport equation. Ann. Nucl. Energ. 9, 169–174 (1982)

    Article  Google Scholar 

  15. Coppa, G., Ravetto, P., Sumini M.: Approximate solution to neutron transport equation with linear anisotropic scattering. J. Nucl. Sci. Tech. 20, 822–831 (1983)

    Article  Google Scholar 

  16. Coppa, G., Ravetto, P., Sumini, M.: An alternative formulation of the monokinetic transport equation. Transport Theor. Stat. Phys. 14, 83–102 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. Coppa, G.G.M., Dulla, S., Peano, F., Ravetto, P.: Alternative forms of the time-dependent neutron transport equation. Progr. Nucl. Energ. 50, 934–938 (2008)

    Article  Google Scholar 

  18. Coppa, G.G.M., Giusti, V., Montagnini, B., Ravetto, P.: On the relation between spherical harmonics and simplified spherical harmonics methods. Transport Theor. Stat. Phys. 39(2), 164–191 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Davison, B.: Neutron Transport Theory. Clarendon Press, Oxford (1958)

    Google Scholar 

  20. Deville, M.O., Fisher, P.F., Mund, E.: High-Order Methods for Incompressible Fluid Flow. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  21. Gelbard, E.M.: Simplified Spherical Harmonics Equations and Their Use in Shielding Problems. Technical Report WAPD-T-1182, Westinghouse Electric Corp. Bettis Atomic Power Laboratory, Pittsburgh, Pennsylvania (1961)

    Google Scholar 

  22. Kavenoky, A., Stepanek, J., Schmidt, F.: Benchmark Problems. Transport Theory and Advanced Reactor Simulations. IAEA-TECDOC-254, International Atomic Energy Agency, Vienna, Austria (1979)

    Google Scholar 

  23. Lewis, E.E., Miller, W.F. Jr.: Computational Methods of Neutron Transport. Wiley, New York (1984)

    Google Scholar 

  24. Mund, E.: Spectral element solutions for the P N neutron transport equations. Comput. Fluid 43(1), 102–106 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Natelson, M.: Variational derivation of discrete ordinate-like approximations. Nucl. Sci. Eng. 43, 131–144 (1971)

    Google Scholar 

  26. Prinja, A.K., Larsen, E.W.: General principles of neutron transport. In: Cacuci, D.G. (ed.) Handbook of Nuclear Engineering, vol. II(12). Springer, New York (2010)

    Google Scholar 

  27. Santandrea, S., Sanchez, R., Mosca, P.: A linear surface characteristics approximation for neutron transport in unstructured meshes. Nucl. Sci. Eng. 160, 23–40 (2008)

    Google Scholar 

  28. Stewart, J.C., Zweifel, P.F.: A review of self-shielding effects in the absorption of neutron. In: Second International Conference on the Peaceful Uses of Atomic Energy, vol. 16, pp. 650–662, Geneva, Switzerland (1958)

    Google Scholar 

Download references

Acknowledgements

One of the authors (P.R.) is very grateful to the organizers of the IMSE-2012 Conference for the kind invitation and the generous support that enabled him to travel to Bento Gonçalves and to take part in the stimulating scientific sessions held in such a friendly atmosphere.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ravetto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Barbarino, A., Dulla, S., Ravetto, P. (2013). Integral Neutron Transport and New Computational Methods: A Review. In: Constanda, C., Bodmann, B., Velho, H. (eds) Integral Methods in Science and Engineering. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4614-7828-7_3

Download citation

Publish with us

Policies and ethics