Skip to main content

Synchrotron Radiation

  • Chapter
  • First Online:
Physics of the Plasma Universe
  • 1765 Accesses

Abstract

Electromagnetic waves propagated in cosmic space derive from a variety of mechanisms. The major contribution in the optical region of the spectrum is from radiation resulting from bound-bound electron transitions between discrete atomic or molecular states, free-bound transitions during recombination, and free-free transitions in the continuum. In the latter case, when for transitions between levels, radiation classified as bremsstrahlung results from the acceleration of electrons traveling in the vicinity of the atom or ion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The “island universes” concept was introduced by the philosopher Kant (1724–1804).

  2. 2.

    A time frame study of the fields shows that the strength of the “static” component does vary slowly in time.

  3. 3.

    The function δ 2(y) is to be interpreted as δ(y)T∕2π where T is the period of revolution.

  4. 4.

    While P ω (0) has no rotation, P ω (1) does rotate.

  5. 5.

    Long after the thermal plasma X ray burst, streak photographs show the Bennett-pinched exploded wire plasmas converging onto the centrally confined plasma because of the Biot-Savart attraction. The pinhole camera placed in front of the anode records a single “dot” of X rays.

References

  • Alfvén, H., Herlofson, N.: Cosmic radiation and radio stars. Phys. Rev. 78, 616 (1950)

    Article  ADS  Google Scholar 

  • Baade, W., Minkowksi, R.: Identification of the radio sources in Cassiopeia, Cygnus A, and Puppis A. Astrophys. J. 119, 206 (1954)

    Article  ADS  Google Scholar 

  • Bekefi, G.: Radiation Processes in Plasmas. Wiley, New York (1966)

    Google Scholar 

  • Bennett, W.H.: Magnetically self-focussing streams. Phys. Rev. 45, 890 (1934)

    Article  ADS  Google Scholar 

  • Ekers, R.D.: Radio observations of the nuclei of galaxies. In: Shakeshaft, J.R. (ed.) The Formation and Dynamics of Galaxies (IAU Symposium 58), Canberra, p. 257 (1974)

    Google Scholar 

  • Epstein, R.I., Feldman, P.A.: Synchrotron radiation from electrons in helical orbits. Astrophys. J. 150, L109 (1967)

    Article  ADS  Google Scholar 

  • Ginzburg, V.L., Syrovatskii, S.I.: Cosmic magnetobremsstrahlung. Ann. Rev. Astron. Astrophys. 3, 297 (1965)

    Article  ADS  Google Scholar 

  • Hutchings, J.B.: What is the difference between radio galaxies and radio quasar galaxies? Astrophys. J. 320, 122 (1987)

    Article  ADS  Google Scholar 

  • Johner, J.: Angular distribution of the total cyclotron radiation of a relativistic particle with parallel velocity. Phys. Rev. A 36, 1498 (1988)

    Article  ADS  Google Scholar 

  • Jones, D.S.: The Theory of Electromagnetism. Pergamon Press, New York (1964)

    MATH  Google Scholar 

  • Kai, K.: Polarization characteristics of type IV bursts. Publ. Astron. Soc. Jpn. 17, 294 (1965)

    ADS  Google Scholar 

  • Kawabuta, K.: Transfer of the gyro-resonance radiation. Publ. Astron. Soc. Jpn. 16, 30 (1964)

    ADS  Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields. Pergamon, Oxford (1962). Chap. 9

    Google Scholar 

  • Liang, E.P.: Gamma ray bursts: confrontation between theory and observational data. In: Johnson, W.N. (ed.) Proceedings of the GRO Science Workshop, Greenbelt, pp. 4–397. Naval Research Laboratory, Washington, DC (1989)

    Google Scholar 

  • Mack, J.M., Peratt, A.L., Gisler, G.R.: Microwave signatures from circulating electron rings. Bull. Am. Phys. Soc. 32, 1721 (1987)

    Google Scholar 

  • Meirovich, B.E.: Electromagnetic collapse, problems of stability, emission of radiation and evolution of a dense pinch. Phys. Rep. 104, 259 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  • Miley, G.: The structure of extended extragalactic radio sources. Ann. Rev. Astron. Astrophys. 18, 165 (1980)

    Article  ADS  Google Scholar 

  • Newberger, B.S. et al: Synchrotron radiation from Bennett beams, Bull. Amer. Phys. Soc. 29, 1435 (1984)

    Google Scholar 

  • Pacholczyk, A.G.: Radio Galaxies. Pergamon Press, New York (1977)

    Google Scholar 

  • Panosfsky, W.K., Phillips, M.: Classical Electricity and Magnetism. Addison-Wesley, Reading (1962)

    Google Scholar 

  • Peratt, A.L., Kuehl, H.H.: Transmission and reflection of a wave obliquely incident on a nonuniform magnetized plasma, Radio Sci. 7, 309 (1972)

    Article  ADS  Google Scholar 

  • Peratt, A.L.: Evolution of the plasma universe: I. Double radio galaxies, quasars, and extragalactic jets. IEEE Trans. Plasma Sci. 14, 639 (1986)

    Google Scholar 

  • Peratt, A.L., Green, J.C.: On the evolution of interacting magnetized, galactic plasmas. Astrophys. Space Sci. 91, 19 (1983)

    Article  ADS  Google Scholar 

  • Peratt, A.L., Koert, P.: Pulsed electromagnetic acceleration of exploded wire plasmas. J. Appl. Phys. 54, 6292 (1985)

    Article  ADS  Google Scholar 

  • Perola, G.C.: Radio galaxies: observations and theories of their extended components. Fundam. Cosmic Phys. 7, 59 (1981)

    ADS  Google Scholar 

  • Reber, G.: Cosmic static. Astrophys. J. 100, 279 (1944)

    Article  ADS  Google Scholar 

  • Rose, D.J., Clark, M.: Plasmas and Controlled Fusion. MIT, Cambridge (1961)

    MATH  Google Scholar 

  • Scheuer, P.A.G.: Synchrotron radiation formulae. Astrophys. J. 151, L139 (1968)

    Article  ADS  Google Scholar 

  • Schwinger, J.: On the classical radiation of accelerated electrons. Phys. Rev. 75, 1912 (1949)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Shklovsky, I.S.: Cosmic Radio Waves. Harvard University Press, Cambridge (1960). Chap. VI

    Google Scholar 

  • Stratton, J.A.: Electromagnetic Theory McGraw-Hill, New York (1941)

    Google Scholar 

  • Takakura, T.: Synchrotron radiation from intermediate energy electrons in helical orbits and solar radio bursts at microwave frequencies. Publ. Astron. Soc. Jpn. 12, 352 (1960)

    ADS  Google Scholar 

  • Trubnikov, B.A.: Plasma radiation in a magnetic field, Sov. Phys. Doklady 3, 136 (1958)

    ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Peratt, A.L. (2015). Synchrotron Radiation. In: Physics of the Plasma Universe. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7819-5_6

Download citation

Publish with us

Policies and ethics