Advertisement

Cosmic Plasma Fundamentals

  • Anthony L. Peratt
Chapter

Abstract

Plasma consists of electrically charged particles that respond collectively to electromagnetic forces. The charged particles are usually clouds or beams of electrons, ions, and neutrals or a mixture of electrons ions, and neutrals but also can be charged grains or dust particles. Plasma is also created when a gas is brought to a temperature that is comparable to or higher than that in the interior of stars. At these temperatures, all light atoms are stripped of their electrons, and the gas is reduced to its constituent parts: positively charged bare nuclei and negatively charged free electrons.

Keywords

Solar Wind Transmission Line Interplanetary Magnetic Field Magnetic Field Line Coronal Loop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alfvén, H.: On the cosmogony of the solar system. Stockh. Obs. Ann. I. 14(2), 8 (1942)ADSGoogle Scholar
  2. Alfvén, H.: Cosmical Electrodynamics. Oxford University Press, New York (1950)MATHGoogle Scholar
  3. Alfvén, H.: Cosmic Plasma. D. Reidel, Dordrecht (1981)CrossRefGoogle Scholar
  4. Alfvén, H., Arrhenius, G.: Evolution of the Solar System. NASA Publication, SP-345. NASA, Washington, DC (1976)Google Scholar
  5. Alfvén, H., Fälthammar, C.-G.: Cosmical Electrodynamics. Oxford, London (1963)MATHGoogle Scholar
  6. Alfvén, H., Wernholm, O.: A new type of accelerator. Ark. För Fys. 15, 175 (1952)Google Scholar
  7. Akasofu, S.-I.: Energy coupling between the solar wind and the magnetosphere. Space Sci. Rev. 28, 121 (1981)CrossRefADSGoogle Scholar
  8. Bennett, W.H.: Magnetically self-focussing streams. Phys. Rev. 45, 890 (1934)CrossRefADSGoogle Scholar
  9. Berlin, A.B., Bulaenko, E.N., Vitkivskii, V.V., Pariiskii, Y.N., Petrov, Z.E.: Search for small scale anisotropy of the 3K emission of the universe. In: Abell, G.O., Chincarini, G.L. (eds.) Early Evolution of the Universe and its Present Structure. IAU Symposium, Kolymbari, 104, pp. 121–124. D. Reidel, Dordrecht (1983)CrossRefGoogle Scholar
  10. Book, D.L.: Plasma Formulary. NRL Publication 0084–4040. Naval Research Laboratory, Washington, DC (1987)Google Scholar
  11. Borucki, W.J.: Planetary lightning: a short review of extraterrestrial lightning characteristics. In: Kikuchi, H. (ed.) Laboratory and Space Plasmas. Springer, Berlin (1989)Google Scholar
  12. Bostick, W.H.: What laboratory-produced plasma structures can contribute to the understanding of cosmic structures both large and small. IEEE Trans. Plasma Sci. 1, 703 (1986)CrossRefADSGoogle Scholar
  13. Brenning, N., Axnäs, I.: Critical ionization velocity interactions: some unsolved problems. Astrophys. Space Sci. 144, 15 (1988)ADSGoogle Scholar
  14. Bridle, A.H.: The spectrum of the radio background between 13 and 404 MHz. Mon. Not. R. Astro. Soc. 136, 219 (1967)Google Scholar
  15. Brown, W.C., Ness, W.N., Van Allen, J.A.: Collected papers on the artificial radiation belt from the July 9, 1962, nuclear detonation. J. Geophys. Res. 68, 605 (1963)CrossRefADSGoogle Scholar
  16. Buneman, O., Levy, R.H., Linson, L.M.: Stability of crossed-field electron beams. J. Appl. Phys. 37, 3203 (1966)CrossRefADSGoogle Scholar
  17. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Clarendon, Oxford (1961)MATHGoogle Scholar
  18. Cloutier, P.A., Daniell, R.E., Dessler, A.J., Hill, T.J.: A cometary ionosphere model for Io. Astrophys. Space Sci. 55, 93 (1978)CrossRefADSGoogle Scholar
  19. Collins, G.B.: Microwave Magnetrons. McGraw-Hill, New York (1948)Google Scholar
  20. Dennis, B., Canfield, R.: Max’91. NASA Goddard Space Flight Center, Greenbelt (1988)Google Scholar
  21. Destler, W.W., Hoeberling, R.F., Kim, H., Bostick, W.H.: Collective acceleration of carbon ions to 170 MeV. Appl. Phys. Lett. 35, 296 (1979)Google Scholar
  22. Di Capua, M.S.: Magnetic insulation. IEEE Trans. Plasma Sci. 11, 205 (1983)CrossRefADSGoogle Scholar
  23. Eastman, T.: Transition regions in solar system and astrophysical plasmas. IEEE Trans. Plasma Sci. 18, 18 (1990)CrossRefADSGoogle Scholar
  24. Faehl, R.J., Godfrey, B.B.: Collective ion acceleration through temporal modulation of relativistic-electron beam energy. Phys. Rev. Lett. 40, 1137 (1978)CrossRefADSGoogle Scholar
  25. Fälthammar, C.-G.: Laboratory and near-earth space plasma as a key to the plasma universe. Laser Part. Beams 6, 437 (1988)CrossRefADSGoogle Scholar
  26. Fälthammar, C.-G.: Electrodynamics of cosmical plasmas: some basic aspects of cosmological importance. IEEE Trans. Plasma Sci. 18, 11 (1990)CrossRefADSGoogle Scholar
  27. Fahleson, U.: Experiments with plasma moving through neutral gas. Phys. Fluids 4, 123 (1961)CrossRefADSGoogle Scholar
  28. Felch, K.L.: Introduction to the special issue on high-power microwave generation. IEEE Trans. Plasma Sci. 13, 361 (1985)CrossRefGoogle Scholar
  29. Galeev, A.A. et al.: Critical ionization velocity effects in the inner coma of Comet Halley: measurements by Vega-2. Geophys. Res. Lett. 13, 845 (1986)CrossRefADSGoogle Scholar
  30. Gold, T., Soter, S.: Cometary impact and the magnetization of the moon. Planet. Space Sci. 24, 45 (1976)CrossRefADSGoogle Scholar
  31. Haerendel, G.: Alfvén’s critical velocity effect tested in space. Z. Naturforsch. 37a, 728 (1982)Google Scholar
  32. Haerendel, G.: Plasma flow and critical velocity ionization in cometary comae. Geophys. Res. Lett. 13, 255 (1986)CrossRefADSGoogle Scholar
  33. Jursa, A.S.: Handbook of Geophysics and the Space Environment. National Technical Information Service. U.S. Department of Commerce, Springfield (1985)Google Scholar
  34. Kaiser, M.L., Desch, M.D.: Radio emissions from the planets Earth, Jupiter, and Saturn. Rev. Geophys. Space Phys. 22, 373 (1984)CrossRefADSGoogle Scholar
  35. Katsouleas, T.: Introduction to the special issue on plasma-based high-energy accelerators. IEEE Trans. Plasma Sci. 15, 85 (1987)CrossRefGoogle Scholar
  36. Lai, S.T., Murad, E., McNeil, W.J.: An overview of atomic and molecular processes in critical ionization velocity. IEEE Trans. Plasma Sci. 17, 124 (1989)CrossRefADSGoogle Scholar
  37. Lang, K.: Astrophysical Formulae. Springer, New York (1974)CrossRefGoogle Scholar
  38. Lindeman, R.A., et al.: The interaction between an impact-produced neutral gas cloud and the solar wind at the lunar surface. J. Geophys. Res. 79, 2287 (1974)CrossRefADSGoogle Scholar
  39. Luce, J.S.: Neutrons and radioisotopes produced by collective effect acceleration. Ann. N. Y. Acad. Sci. 251, 217 (1975)ADSGoogle Scholar
  40. Luhmann, J.: An assessment of the conditions for critical velocity ionization at the weakly ionized planets. In: Paper XIII.1.6 at the XXVIIth COSPAR Meeting, Helsinki (1988)Google Scholar
  41. Lui, A.T.Y. (ed.): Magnetotail Physics. The Johns Hopkins University Press, Baltimore (1987)Google Scholar
  42. Miller, R.B.: Intense Charged Particle Beams. Plenum, New York (1982)CrossRefGoogle Scholar
  43. Moran, P.: Masers in the nuclei of galaxies. Nature 310, 270 (1984)CrossRefADSGoogle Scholar
  44. Nahin, P.J.: Oliver Heaviside: Sage in Solitude. IEEE, New York (1988)Google Scholar
  45. Ness, W.N.: Collected papers on the artificial radiation belt from the July 9, 1962, nuclear detonation. J. Geophys. Res. 68, 605 (1963)CrossRefADSGoogle Scholar
  46. Peratt, A.L.: A high-power reflex triode microwave source. IEEE Trans. Plasma Sci. 13, 498 (1985)CrossRefADSGoogle Scholar
  47. Periiskii, Y.N., Korolkov, D.V.: Experiment cold: the first deep sky survey with the Ratan-600 radio telescope. Sov. Sci. Rev. E. Astrophys. Space Phys. 5, 39 (1986)Google Scholar
  48. Petelski, E.F.: Viability of the critical ionization velocity concept in selected space situations. In: Kikuchi, H. (ed.) Relation Between Laboratory and Space Plasmas. D. Reidel, Dordrecht (1981)Google Scholar
  49. Petelski, E.F., Fahr, H.J., Ripken, H.W., Brenning, N., Axnäs, I.: Enhanced interaction of the solar wind and the interstellar neutral gas by virtue of a critical velocity effect. Astron. Astrophys. 87, 20 (1980)ADSGoogle Scholar
  50. Plyutto, A.A., Ryzhkov, V.N., Kapin, A.T.: High Speed Plasma Streams in Vacuum Arcs. Sov. Phys. JETP 20, 328 (1965)Google Scholar
  51. Priest, E.R.: Solar System Magnetic Fields. D. Reidel, Dordrecht (1985)CrossRefGoogle Scholar
  52. Reber, G.: Intergalactic plasma. IEEE Trans. Plasma Sci. 14, 678 (1986)CrossRefADSGoogle Scholar
  53. Rose, D.J., Clark, M.: Plasmas and Controlled Fusion. MIT, Cambridge (1961)MATHGoogle Scholar
  54. Shanahan, W.R., Faehl, R.J.: Collective ion acceleration. Los Alamos National Laboratory Report LA-8961-PR (1981); Suess, S.T., Dessler, A.J.: Probing the local interstellar medium. Nature 317, 702 (1985)Google Scholar
  55. Torbert, R.: Review of ionospheric CIV experiments. In: Paper XIII.2.1 at the XXVIIth COSPAR Meet, Helsinki (1988)Google Scholar
  56. Urey, H.C.: The atmosphere of the planets. In: Handbuch der Physik, vol. 52, p. 363. Springer, Berlin (1959)Google Scholar
  57. Urey, H.C.: Abundances of the elements, part IV: abundances of interstellar molecules an laboratory Spectroscopy. Ann. N. Y. Acad. Sci. 194, 35 (1972)CrossRefADSGoogle Scholar
  58. Urey, H.C., Alfvén, H.: Testimony on the California Nuclear Initiative. Energy. 1(1), 105–108 (1976)CrossRefGoogle Scholar
  59. Willett, J.C., Bailey, J.C., Leteinturier, C., Krider, E.P.: Lightning electromagnetic radiation field spectra in the interval from 0.2 to 20 MHz. J. Geophys. Res. 95, 20367 (1990)Google Scholar
  60. Yusef-Zadeh, F., Morris, M., Chance, D.: Large, highly organized radio structures near the galactic centre. Nature 310, 557 (1984)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Anthony L. Peratt
    • 1
  1. 1.Los AlamosUSA

Personalised recommendations