Skip to main content

Nutrient Cycles and Mass Balances

Abstract

Chemical elements without a prominent gaseous phase at normal biologic temperature, such as calcium, magnesium, and potassium, have what is referred to as a sedimentary biogeochemical cycle (Odum 1959). That is, flux and cycling are affected primarily by hydrologic factors (including dissolution, erosion, and sedimentation), landslides, vulcanism, and biologic agents. At some places, for example, arid regions, calcium, magnesium, sodium, potassium, and phosphorus have relatively large airborne fluxes of particulates, which complicate quantitative measurement of their fluxes and cycles. The presence of a prominent gaseous component in the biogeochemical cycle (e.g., C, N, and S) greatly complicates measurement and analysis at the ecosystem scale, as discussed previously. To illustrate a sedimentary cycle, the average biogeochemical relationships for calcium and potassium at HBEF will be summarized for two pentads: one near the beginning of the long-term record and one nearer the end. The cycle for sulfur will be used to show relationships for an element with a major meteorologic component. “Average” is somewhat misleading in this regard because of the large temporal changes that have occurred since 1963, as discussed in previous chapters. Nevertheless, summarizing and synthesizing long-term data into a conceptual diagram for various nutrients provides new understanding and insights.

Keywords

  • Root Exudate
  • Dissolve Inorganic Nitrogen
  • Dissolve Organic Nitrogen
  • Bulk Precipitation
  • Sedimentary Cycle

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4614-7810-2_6
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-1-4614-7810-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)
Hardcover Book
USD   99.99
Price excludes VAT (USA)
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63

References

  • Art HW, Bormann FH, Voigt GK, Woodwell GM (1974) Barrier Island forest ecosystem: the role of meteorological nutrient inputs. Science 184:60–62

    PubMed  CrossRef  CAS  Google Scholar 

  • Bailey AS, Hornbeck JW, Campbell JL, Eagar C (2003) Hydrometeorological database for Hubbard Brook Experimental Forest: 1955–2000. USDA Forest Service, Northeastern Research Station, General Technical Report NE-305, 36 pp

    Google Scholar 

  • Bailey SW, Buso DC, Likens GE (2003b) Implications of sodium mass balance for interpreting the calcium cycle of a forested ecosystem. Ecology 84(2):471–484

    CrossRef  Google Scholar 

  • Bormann FH, Likens GE (1979) Pattern and process of a forested ecosystem. Springer-Verlag, New York, NY, 253 pp

    CrossRef  Google Scholar 

  • Buso DC, Likens GE, Eaton JS (2000) Chemistry of precipitation, streamwater and lakewater from the Hubbard Brook Ecosystem Study: a record of sampling protocols and analytical procedures. USDA Forest Service, Northeastern Research Station, Newtown Square, PA, General Technical Report NE-275, 52 pp

    Google Scholar 

  • Carlisle A, Brown AHF, White EJ (1967) The nutrient content of tree stem flow and ground flora litter and leachates in a sessile oak (Quercus petraea) woodland. J Ecol 55:615–627

    CrossRef  Google Scholar 

  • Covington WW (1976) Secondary succession in northern hardwoods: forest floor organic matter and nutrients and leaf fall. Ph.D. Thesis, Yale University, New Haven, CT, 117 pp

    Google Scholar 

  • Cowling DW, Jones LHP, Lockyer DR (1973) Increased yield through correction of sulphur deficiency in ryegrass exposed to sulphur dioxide. Nature 243(5407):479–480

    CrossRef  CAS  Google Scholar 

  • Dominski AS (1971) Accelerated nitrate production and loss in the northern hardwood forest ecosystem underlain by podzol soils following clear cutting and addition to herbicides. Ph.D. Thesis, Yale University, 157 pp

    Google Scholar 

  • Duvigneaud P, Denaeyer-DeSmet S (1964) Le cycle des éléments biogènes dans l'écosystème forêt (Forêts tempèrées caducifoliées). Lejeunia 28:1–148

    Google Scholar 

  • Eaton JS, Likens GE, Bormann FH (1973) Throughfall and stemflow chemistry in a northern hardwood forest. J Ecol 61:495–508

    CrossRef  CAS  Google Scholar 

  • EPA (2010) Chapter 6, p 14

    Google Scholar 

  • Eriksson E (1952) Composition of atmospheric precipitation. II. Sulfur, chloride, iodine compounds. Bibliography. Tellus 4:280–303

    CrossRef  CAS  Google Scholar 

  • Federer CA, Hornbeck JW, Tritton LM, Martin CW, Pierce RS, Smith CT (1989) Long-term depletion of calcium and other nutrients in eastern U.S. forests. Environ Manag 13(5):593–601

    CrossRef  Google Scholar 

  • Gosz JR, Likens GE, Bormann FH (1972) Nutrient content of litter fall on the Hubbard Brook Experimental Forest, New Hampshire. Ecology 53(5):769–784

    CrossRef  CAS  Google Scholar 

  • Gosz JR, Likens GE, Bormann FH (1973) Nutrient release from decomposing leaf and branch litter in the Hubbard Brook Forest, New Hampshire. Ecol Monogr 43(2):173–191

    CrossRef  Google Scholar 

  • Gosz JR, Likens GE, Bormann FH (1976) Organic matter and nutrient dynamics of the forest and forest floor in the Hubbard Brook Forest. Oecologia (Berlin) 22:305–320

    CrossRef  Google Scholar 

  • Graedel TE, Keene WC (1996) The budget and cycle of Earth’s natural chlorine. Pure Appl Chem 68:1689–1697

    CrossRef  CAS  Google Scholar 

  • Groffman PM, Rosi-Marshall E (2013) The nitrogen cycle. In: Weathers KC, Strayer DL, Likens GE (eds) Fundamentals of ecosystem science. Academic, New York, pp 137–158

    Google Scholar 

  • Hill AC (1971) Vegetation: a sink for atmospheric pollutants. J Air Poll Contr Assoc 21:341–346

    CrossRef  CAS  Google Scholar 

  • Hoeft RG, Keeney DR, Walsh LM (1972) Nitrogen and sulfur in precipitation and sulfur dioxide in the atmosphere in Wisconsin. J Environ Qual 1:203–208

    CrossRef  CAS  Google Scholar 

  • Johnson CE (1989) The chemical and physical properties of a northern hardwood forest soil: harvesting effects, soil-tree relations and sample size determination. Ph.D. Thesis, University of Pennsylvania, Philadelphia, PA, 221 pp

    Google Scholar 

  • Johnson NM, Likens GE, Bormann FH, Pierce RS (1968) Rate of chemical weathering of silicate minerals in New Hampshire. Geochim Cosmochim Acta 32:531–545

    CrossRef  CAS  Google Scholar 

  • Kulkarni MV, Groffman PM, Yavitt JB (2008) Solving the global nitrogen problem: it’s a gas! Front Ecol Environ 6:199–206

    CrossRef  Google Scholar 

  • Likens GE (2004) Some perspectives on long-term biogeochemical research from the Hubbard Brook Ecosystem Study. Ecology 85(9):2355–2362

    CrossRef  Google Scholar 

  • Likens GE, Buso DC (2012) Dilution and the elusive baseline. Environ Sci Technol 46(8):4382–4387. doi:10.1021/es3000189

    PubMed  CrossRef  CAS  Google Scholar 

  • Likens GE, Bormann FH (1970) Chemical analyses of plant tissues from the Hubbard Brook Ecosystem in New Hampshire. Bulletin 79, Yale University School of Forestry, New Haven, CT, 25 pp

    Google Scholar 

  • Likens GE, Bailey SW (2013) The discovery of acid rain at the Hubbard Brook Experimental Forest – a story of collaboration and long-term research. In: Experimental forest and range (in press)

    Google Scholar 

  • Likens GE, Bormann FH, Pierce RS, Eaton JS, Johnson NM (1977) Biogeochemistry of a forested ecosystem. Springer-Verlag, New York, 146 pp

    CrossRef  Google Scholar 

  • Likens GE, Driscoll CT, Buso DC, Siccama TG, Johnson CE, Lovett GM, Ryan DF, Fahey T, Reiners WA (1994) The biogeochemistry of potassium at Hubbard Brook. Biogeochemistry 25:61–125

    CrossRef  CAS  Google Scholar 

  • Likens GE, Driscoll CT, Buso DC (1996) Long-term effects of acid rain: response and recovery of a forest ecosystem. Science 272:244–246

    CrossRef  CAS  Google Scholar 

  • Likens GE, Driscoll CT, Buso DC, Siccama TG, Johnson CE, Lovett GM, Fahey TJ, Reiners WA, Ryan DF, Martin CW, Bailey SW (1998) The biogeochemistry of calcium at Hubbard Brook. Biogeochemistry 41(2):89–173

    CrossRef  CAS  Google Scholar 

  • Likens GE, Butler TJ, Buso DC (2001) Long- and short-term changes in sulfate deposition: effects of The 1990 Clean Air Act Amendments. Biogeochemistry 52(1):1–11

    CrossRef  CAS  Google Scholar 

  • Likens GE, Driscoll CT, Buso DC, Mitchell MJ, Lovett GM, Bailey SW, Siccama TG, Reiners WA, Alewell C (2002a) The biogeochemistry of sulfur at Hubbard Brook. Biogeochemistry 60(3):235–316

    CrossRef  CAS  Google Scholar 

  • Likens GE, Buso DC, Hornbeck JW (2002b) Variation in chemistry of stream water and bulk deposition across the Hubbard Brook Valley, New Hampshire, USA. Verh Int Verein Limnol 28(1):402–409

    CAS  Google Scholar 

  • Lindenmayer DB, Likens GE (2010) Effective ecological monitoring. CSIRO Publishing and Earthscan, 170 pp

    Google Scholar 

  • Lovett GM, Bowser JJ, Edgerton ES (1997) Atmospheric deposition to watersheds in complex terrain. Hydrol Process 11:645–654

    CrossRef  Google Scholar 

  • Lovett GM, Likens GE, Buso DC, Driscoll CT, Bailey SW (2005) The biogeochemistry of chlorine at Hubbard Brook, New Hampshire, USA. Biogeochemistry 72:191–232

    CrossRef  CAS  Google Scholar 

  • Lunt HA (1932) Profile characteristics of New England forest soils. Conn Agric Exp Sta Bull 342:743–836

    CAS  Google Scholar 

  • Mitchell MJ, Lovett G, Bailey S, Beall F, Burns D, Buso D, Clair TA, Courchesne F, Duchesne L, Eimers C, Fernandez I, Houle D, Jeffries DS, Likens GE, Moran MD, Rogers C, Schwede D, Shanley J, Weathers KC, Vet R (2011) Comparisons of watershed sulfur budgets in southeast Canada and northeast US: new approaches and implications. Biogeochemistry 103:181–207. doi:10.1007/s10533-010-9455-0

    CrossRef  CAS  Google Scholar 

  • Muller RN, Bormann FH (1976) The role of Erythronium americanium Ker. in energy flow and nutrient dynamics of a northern hardwood forest ecosystem. Science 193:1126–1128

    PubMed  CrossRef  CAS  Google Scholar 

  • Odum EP (1959) Fundamentals of ecology, 2nd edn. W.B. Saunders, Philadelphia, PA, 546 pp

    Google Scholar 

  • Roskoski JP (1980) Nitrogen fixation in a northern hardwood forest in the northeastern United States. Plant Soil 54:33–44

    CrossRef  CAS  Google Scholar 

  • Smith WH (1976) Character and significance of forest tree root exudates. Ecology 57:324–331

    CrossRef  CAS  Google Scholar 

  • Svensson T, Lovett GM, Likens GE (2012) Is chloride a conservative ion in forest ecosystems? Biogeochemistry 107:125–134. doi:10.1007/s10533-010-9538-y

    CrossRef  CAS  Google Scholar 

  • Tamm CO, Troedsson T (1955) An example of the amounts of plant nutrients supplied to the ground in road dust. Oikos 6:61–70

    CrossRef  Google Scholar 

  • Tripler CE, Kaushal SS, Likens GE, Walter MT (2006) Patterns in potassium dynamics in forest ecosystems. Ecol Lett 9:451–466

    PubMed  CrossRef  Google Scholar 

  • van Doorn NS, Battles JJ, Fahey TJ, Siccama TG, Schwarz PA (2011) Links between biomass and tree demography in a northern hardwood forest: a decade of stability and change in Hubbard Brook Valley, New Hampshire. Can J For Res 41:1369–1379

    CrossRef  Google Scholar 

  • White EJ, Turner F (1970) A method of estimating income of nutrients in catch of airborne particles by a woodland canopy. J Appl Ecol 7:441–461

    CrossRef  Google Scholar 

  • Whittaker RH, Bormann FH, Likens GE, Siccama TG (1974) The Hubbard Brook Ecosystem Study: forest biomass and production. Ecol Monogr 44(2):233–254

    CrossRef  Google Scholar 

  • Yanai RD, Levine C, Green M, Campbell J (2012) Quantifying uncertainty in forest nutrient budgets. J For 110(8):448–456

    Google Scholar 

  • Zhang Y, Mitchell MJ, Driscoll CT, Likens GE (1999) Changes in soil sulfur constituents in a forested watershed 8 years after whole-tree harvesting. Can J For Res 29:356–364

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Likens, G.E. (2013). Nutrient Cycles and Mass Balances. In: Biogeochemistry of a Forested Ecosystem. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7810-2_6

Download citation