Infrared imaging bolometers

  • Harry A. C. Eaton
Chapter
Part of the ISSI Scientific Report Series book series (ISSI, volume 9)

Abstract

Infrared imaging bolometers have found great utility in space imaging applications. Bolometers measure incident energy by observing a temperature change caused when a material absorbs photons. Because there is great flexibility in choosing the absorbing material characteristics, bolometers can readily be designed to have narrow or broad-band characteristics over a wide range of wavelengths. Imaging bolometers are simply formed from arrays of individual bolometers in the focal plane of a telescope. Uncooled bolometers with high pixel counts are applied for studying the Sun and planets, while imaging bolometers cooled to very low temperatures but having fewer pixels, have been designed for deep-space imaging applications, typically in the very-long wavelength to sub-millimetre region. Ultra-low temperature imaging bolometers have achieved detectivities better than the best photo-current detectors in the far-infrared region.

Keywords

Dust Anisotropy Vanadium Explosive Germanium 

References

  1. Ade PAR, Aghanim N, Ansari R (plus 161 authors) (2011) Planck early results: first assessment of the High Frequency Instrument in-flight performance. Astron Astrophys 536:A4Google Scholar
  2. Benford DJ, Rinehart SA, Leisawitz DT, Hyde TT (2007) Cryogenic far-infrared detectors for the Space Infrared Interferometric Telescope (SPIRIT). Proc SPIE 6687:66870-1–12Google Scholar
  3. Bernasconi PN, Eaton HAC, Foukal P, Rust D (2004) The solar bolometric imager. Adv Space Res 33:1746–1754ADSCrossRefGoogle Scholar
  4. Beyer J, Drung D, Peters M (plus two authors) (2009) A Single-Stage SQUID Multiplexer for TES Array Readout. IEEE Trans Appl Super 19:505–508Google Scholar
  5. Billot N, Agnèse P, Auguères JL (plus 16 authors) (2006) The Herschel/PACS 2560 bolometer imaging camera. Appl. Opt. 40:4921–4932Google Scholar
  6. Bradford CM, Kenyon M, Holmes W (plus two authors) (2008) Sensitive far-IR survey spectroscopy: BLISS for SPICA. Proc SPIE 7020: 70201O-1:12Google Scholar
  7. Buraschi MI, Pignatel GU, Sanguinetti S (1990) Low-temperature conductivity behavior of ion implanted silicon bolometers. J Phys Condens Matter 2:10011–10020ADSCrossRefGoogle Scholar
  8. Corlay G, Arnolfo M-C, Bret-Dibat T (2001) Microbolometer in space: IASI and Picasso-Cena. Act Astronautica 48:299–303ADSCrossRefGoogle Scholar
  9. Datskos PG, Lavrik NV, Rajic S (2004) Performance of uncooled microcantilever thermal detectors. Rev Sci Instrum 75:1134–1146ADSCrossRefGoogle Scholar
  10. Devlin M, Ade PAR, Aretxaga I (plus 24 authors) (2004) The Balloon-borne Large Aperture Submillimeter Telescope (BLAST). Proc SPIE 5498:42–54Google Scholar
  11. Foukal P, Libonate S (2001) Total-light imager with flat spectral response for solar photometric measurements. Appl Opt 40:1138–1146ADSCrossRefGoogle Scholar
  12. Foukal P, Bernasconi PN (2008) Do photospheric brightness structures outside magnetic flux tubes contribute to solar luminosity variation? Sol Phys 248:1–15ADSCrossRefGoogle Scholar
  13. Griffin MJ, Abergel A, Abreu A (plus 176 authors) (2010) The Herschel-SPIRE instrument and its in-flight performance. Astron Astrophys 518 L3Google Scholar
  14. Griffin MJ, Bock JJ, Gear WK (2002) Relative performance of filled and feedhorn-coupled focal-plane architectures. Appl Optics 41:6543–6554ADSCrossRefGoogle Scholar
  15. Harper DA, Allen CA, Anato MJ (plus 21 authors) (2000) HAWC – a far-infrared camera for SOFIA. Proc SPIE 4014:43–53Google Scholar
  16. Fröhlich C (2013) Solar radiometry. ISSI SR-009:565–581Google Scholar
  17. Hirao T, Matsumoto T, Sato S (plus four authors) (1996) Flight performance of the Far-InfraRed Photometer (FIRP). Proc SPIE 2817:276–285Google Scholar
  18. Horeau B, Boulade O, Claret A (plus seven authors) (2011) Proc RADECS PH-2:541–548Google Scholar
  19. Howard PE, Clarke JE, Bradley MG (plus two authors) (2000) Progress in uncooled focal plane sensor technology at Boeing. Proc SPIE 4130:168–174Google Scholar
  20. Irwin KD (1995) An application of electrothermal feedback for high resolution cryogenic particle detection. Appl Phys Lett 66:1998–2000ADSCrossRefGoogle Scholar
  21. Irwin KD (2002) SQUID multiplexers for transition-edge sensors. Physica C 368:203–210ADSCrossRefGoogle Scholar
  22. Jackson BD, de Korte PAJ, van der Kuur J (plus 15 authors) (2012) The SPICA-SAFARI Detector System: TES Detector Arrays with Frequency-Division Multiplexed SQUID Readout. IEEE Trans THz Sci Tech 2:12–21Google Scholar
  23. Kanno T, Saga M, Matsumoto S (plus 11 authors) (1994) Uncooled infrared focal plane array having 128 × 128 thermopile detector elements. Proc SPIE 2269:450–459Google Scholar
  24. Kenyon M, Day PK, Bradford CM (plus two authors) (2006) Background-limited membrane isolated TES bolometers for far-IR/submillimeter direct detection spectroscopy. Nuc Instrum Meth Phys Res A 559:456–458Google Scholar
  25. Kuzmin L, Golubev D (2002) On the concept of an optimal hot-electron bolometer with NIS tunnel junctions. Physica C 372-376:378–382CrossRefGoogle Scholar
  26. Kuzmin L, Mauskopf P, Golubev D (2006) Superconducting Cold-Electron Bolometers with JFET Readout for OLIMPO Balloon Telescope. J Phys 43:1298–1302Google Scholar
  27. Lancaster R, Skillman D, Welch W (plus two authors) (2003) The Economical Microbolometer-Based Environmental Radiometer Satellite (EMBERSAT) designed for forest fire detection and monitoring. Int Workshop on Thermal Detectors, Washington, DC, TDW2003:2–25Google Scholar
  28. Luukanen A, Leivo MM, Suoknuuti JK (plus two authors) (2000) On-Chip Refrigeration by Evaporation of Hot Electrons at Sub-Kelvin Temperatures. J Low Temp Phys 120:281–290Google Scholar
  29. Mather JC (1982) Bolometer noise: nonequilibrium theory. Appl Optics 21:1125–1129MathSciNetADSCrossRefGoogle Scholar
  30. Murphy D, Radford W, Finch J (plus ten authors) (2000) Multi-spectral uncooled microbolometer sensors for the Mars 2001 orbiter THEMIS instrument. IEEE Aero Conf Proc 3:151–163Google Scholar
  31. Murphy DF, Ray M, Wyles R (plus ten authors) (2002) High-sensitivity 25 μm microbolometer FPAs. Proc SPIE 4721:99–110Google Scholar
  32. Nahum M, Martinis JM (1993) Ultrasensitive hot-electron microbolometer. App Phys Lett 63:3075–3077ADSCrossRefGoogle Scholar
  33. Nguyen HT, Bock JJ, Ringold P (plus 11 authors) (2004) A report on the laboratory performance of the spectroscopic detector arrays for SPIRE/HSO. Proc SPIE 5498:196–207Google Scholar
  34. Poglitsch A, Waelkens C, Geis N (plus 80 authors) (2010) The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory. Astron Astrophys 518:L2, 12 ppGoogle Scholar
  35. Pope T, Bergeron A, Bourqui P (plus eight authors) (2006) Linear microbolometer arrays for space and terrestrial imaging. Proc SPIE 6206:62061P-1–9Google Scholar
  36. Rogalski A (2002) Comparison of photon and thermal detector performance. In: Handbook of Infra-Red Detection Technologies Vol. 1. (New York: Elsevier), 5–81Google Scholar
  37. Spinhirne J, Scott V, Lancaster R (plus two authors) (2000) Performance and results from a space borne, uncooled microbolometer array spectral radiometric imager. Aero Conf Proc IEEE 3:125–134Google Scholar
  38. Tarasov MA, Kuzmin LS, Edelman VS (plus three authors) (2010) Optical Response of a Cold-Electron Bolometer Array. JETP Lett 92:416–420Google Scholar
  39. Tarasov MA, Kuzmin LS, Kaurova NS (plus three authors) (2010) Cold-ElectronBolometer Array with a 350 GHz Cross-Slot Antenna. 21st Int Symp on Space THz Tech 256–261Google Scholar
  40. Yun M, Beeman JW, Bhatia R (plus eight authors) (2003) Bolometric detectors for the Planck surveyor. Proc SPIE 4855:136–147Google Scholar
  41. Yvon D, Panh J, Landé J (plus eight authors) (2008) My bolometer is running a fever, or why very low noise performance requires global design of the apparatus. J Low Temp Phys 151:448–458Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Harry A. C. Eaton
    • 1
  1. 1.Johns Hopkins University Applied Physics LaboratoryLaurelUSA

Personalised recommendations