Skip to main content

Infrared imaging bolometers

  • Chapter
  • First Online:
Observing Photons in Space

Part of the book series: ISSI Scientific Report Series ((ISSI,volume 9))

Abstract

Infrared imaging bolometers have found great utility in space imaging applications. Bolometers measure incident energy by observing a temperature change caused when a material absorbs photons. Because there is great flexibility in choosing the absorbing material characteristics, bolometers can readily be designed to have narrow or broad-band characteristics over a wide range of wavelengths. Imaging bolometers are simply formed from arrays of individual bolometers in the focal plane of a telescope. Uncooled bolometers with high pixel counts are applied for studying the Sun and planets, while imaging bolometers cooled to very low temperatures but having fewer pixels, have been designed for deep-space imaging applications, typically in the very-long wavelength to sub-millimetre region. Ultra-low temperature imaging bolometers have achieved detectivities better than the best photo-current detectors in the far-infrared region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ade PAR, Aghanim N, Ansari R (plus 161 authors) (2011) Planck early results: first assessment of the High Frequency Instrument in-flight performance. Astron Astrophys 536:A4

    Google Scholar 

  • Benford DJ, Rinehart SA, Leisawitz DT, Hyde TT (2007) Cryogenic far-infrared detectors for the Space Infrared Interferometric Telescope (SPIRIT). Proc SPIE 6687:66870-1–12

    Google Scholar 

  • Bernasconi PN, Eaton HAC, Foukal P, Rust D (2004) The solar bolometric imager. Adv Space Res 33:1746–1754

    Article  ADS  Google Scholar 

  • Beyer J, Drung D, Peters M (plus two authors) (2009) A Single-Stage SQUID Multiplexer for TES Array Readout. IEEE Trans Appl Super 19:505–508

    Google Scholar 

  • Billot N, Agnèse P, Auguères JL (plus 16 authors) (2006) The Herschel/PACS 2560 bolometer imaging camera. Appl. Opt. 40:4921–4932

    Google Scholar 

  • Bradford CM, Kenyon M, Holmes W (plus two authors) (2008) Sensitive far-IR survey spectroscopy: BLISS for SPICA. Proc SPIE 7020: 70201O-1:12

    Google Scholar 

  • Buraschi MI, Pignatel GU, Sanguinetti S (1990) Low-temperature conductivity behavior of ion implanted silicon bolometers. J Phys Condens Matter 2:10011–10020

    Article  ADS  Google Scholar 

  • Corlay G, Arnolfo M-C, Bret-Dibat T (2001) Microbolometer in space: IASI and Picasso-Cena. Act Astronautica 48:299–303

    Article  ADS  Google Scholar 

  • Datskos PG, Lavrik NV, Rajic S (2004) Performance of uncooled microcantilever thermal detectors. Rev Sci Instrum 75:1134–1146

    Article  ADS  Google Scholar 

  • Devlin M, Ade PAR, Aretxaga I (plus 24 authors) (2004) The Balloon-borne Large Aperture Submillimeter Telescope (BLAST). Proc SPIE 5498:42–54

    Google Scholar 

  • Foukal P, Libonate S (2001) Total-light imager with flat spectral response for solar photometric measurements. Appl Opt 40:1138–1146

    Article  ADS  Google Scholar 

  • Foukal P, Bernasconi PN (2008) Do photospheric brightness structures outside magnetic flux tubes contribute to solar luminosity variation? Sol Phys 248:1–15

    Article  ADS  Google Scholar 

  • Griffin MJ, Abergel A, Abreu A (plus 176 authors) (2010) The Herschel-SPIRE instrument and its in-flight performance. Astron Astrophys 518 L3

    Google Scholar 

  • Griffin MJ, Bock JJ, Gear WK (2002) Relative performance of filled and feedhorn-coupled focal-plane architectures. Appl Optics 41:6543–6554

    Article  ADS  Google Scholar 

  • Harper DA, Allen CA, Anato MJ (plus 21 authors) (2000) HAWC – a far-infrared camera for SOFIA. Proc SPIE 4014:43–53

    Google Scholar 

  • Fröhlich C (2013) Solar radiometry. ISSI SR-009:565–581

    Google Scholar 

  • Hirao T, Matsumoto T, Sato S (plus four authors) (1996) Flight performance of the Far-InfraRed Photometer (FIRP). Proc SPIE 2817:276–285

    Google Scholar 

  • Horeau B, Boulade O, Claret A (plus seven authors) (2011) Proc RADECS PH-2:541–548

    Google Scholar 

  • Howard PE, Clarke JE, Bradley MG (plus two authors) (2000) Progress in uncooled focal plane sensor technology at Boeing. Proc SPIE 4130:168–174

    Google Scholar 

  • Irwin KD (1995) An application of electrothermal feedback for high resolution cryogenic particle detection. Appl Phys Lett 66:1998–2000

    Article  ADS  Google Scholar 

  • Irwin KD (2002) SQUID multiplexers for transition-edge sensors. Physica C 368:203–210

    Article  ADS  Google Scholar 

  • Jackson BD, de Korte PAJ, van der Kuur J (plus 15 authors) (2012) The SPICA-SAFARI Detector System: TES Detector Arrays with Frequency-Division Multiplexed SQUID Readout. IEEE Trans THz Sci Tech 2:12–21

    Google Scholar 

  • Kanno T, Saga M, Matsumoto S (plus 11 authors) (1994) Uncooled infrared focal plane array having 128 × 128 thermopile detector elements. Proc SPIE 2269:450–459

    Google Scholar 

  • Kenyon M, Day PK, Bradford CM (plus two authors) (2006) Background-limited membrane isolated TES bolometers for far-IR/submillimeter direct detection spectroscopy. Nuc Instrum Meth Phys Res A 559:456–458

    Google Scholar 

  • Kuzmin L, Golubev D (2002) On the concept of an optimal hot-electron bolometer with NIS tunnel junctions. Physica C 372-376:378–382

    Article  Google Scholar 

  • Kuzmin L, Mauskopf P, Golubev D (2006) Superconducting Cold-Electron Bolometers with JFET Readout for OLIMPO Balloon Telescope. J Phys 43:1298–1302

    Google Scholar 

  • Lancaster R, Skillman D, Welch W (plus two authors) (2003) The Economical Microbolometer-Based Environmental Radiometer Satellite (EMBERSAT) designed for forest fire detection and monitoring. Int Workshop on Thermal Detectors, Washington, DC, TDW2003:2–25

    Google Scholar 

  • Luukanen A, Leivo MM, Suoknuuti JK (plus two authors) (2000) On-Chip Refrigeration by Evaporation of Hot Electrons at Sub-Kelvin Temperatures. J Low Temp Phys 120:281–290

    Google Scholar 

  • Mather JC (1982) Bolometer noise: nonequilibrium theory. Appl Optics 21:1125–1129

    Article  MathSciNet  ADS  Google Scholar 

  • Murphy D, Radford W, Finch J (plus ten authors) (2000) Multi-spectral uncooled microbolometer sensors for the Mars 2001 orbiter THEMIS instrument. IEEE Aero Conf Proc 3:151–163

    Google Scholar 

  • Murphy DF, Ray M, Wyles R (plus ten authors) (2002) High-sensitivity 25 μm microbolometer FPAs. Proc SPIE 4721:99–110

    Google Scholar 

  • Nahum M, Martinis JM (1993) Ultrasensitive hot-electron microbolometer. App Phys Lett 63:3075–3077

    Article  ADS  Google Scholar 

  • Nguyen HT, Bock JJ, Ringold P (plus 11 authors) (2004) A report on the laboratory performance of the spectroscopic detector arrays for SPIRE/HSO. Proc SPIE 5498:196–207

    Google Scholar 

  • Poglitsch A, Waelkens C, Geis N (plus 80 authors) (2010) The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory. Astron Astrophys 518:L2, 12 pp

    Google Scholar 

  • Pope T, Bergeron A, Bourqui P (plus eight authors) (2006) Linear microbolometer arrays for space and terrestrial imaging. Proc SPIE 6206:62061P-1–9

    Google Scholar 

  • Rogalski A (2002) Comparison of photon and thermal detector performance. In: Handbook of Infra-Red Detection Technologies Vol. 1. (New York: Elsevier), 5–81

    Google Scholar 

  • Spinhirne J, Scott V, Lancaster R (plus two authors) (2000) Performance and results from a space borne, uncooled microbolometer array spectral radiometric imager. Aero Conf Proc IEEE 3:125–134

    Google Scholar 

  • Tarasov MA, Kuzmin LS, Edelman VS (plus three authors) (2010) Optical Response of a Cold-Electron Bolometer Array. JETP Lett 92:416–420

    Google Scholar 

  • Tarasov MA, Kuzmin LS, Kaurova NS (plus three authors) (2010) Cold-ElectronBolometer Array with a 350 GHz Cross-Slot Antenna. 21st Int Symp on Space THz Tech 256–261

    Google Scholar 

  • Yun M, Beeman JW, Bhatia R (plus eight authors) (2003) Bolometric detectors for the Planck surveyor. Proc SPIE 4855:136–147

    Google Scholar 

  • Yvon D, Panh J, Landé J (plus eight authors) (2008) My bolometer is running a fever, or why very low noise performance requires global design of the apparatus. J Low Temp Phys 151:448–458

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Eaton, H.A.C. (2013). Infrared imaging bolometers. In: Huber, M.C.E., Pauluhn, A., Culhane, J.L., Timothy, J.G., Wilhelm, K., Zehnder, A. (eds) Observing Photons in Space. ISSI Scientific Report Series, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7804-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7804-1_29

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7803-4

  • Online ISBN: 978-1-4614-7804-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics