Skip to main content

Microchannel plates for photon detection and imaging in space

  • Chapter
  • First Online:

Part of the book series: ISSI Scientific Report Series ((ISSI,volume 9))

Abstract

This chapter describes the development of the continuous-dynode electron multiplier and its evolution into the microchannel plate (MCP). The fabrication procedures for MCPs are described and the performance characteristics of MCPs and MCP stacks are enumerated. The configurations and performances of imaging MCP electronic readout systems currently in use in space instruments are described in detail. The unique capabilities of MCP electronic systems for fast timing and for time-tag imaging are listed. Finally, the prospects for the development of the next generation of MCPs are briefly outlined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The progression of MCP manufacturers in Europe and the USA requires clarification in order to avoid confusion. In Europe, Philips closed the Mullard MCP fabrication facility in the UK in 1988 and moved MCP fabrication to Photonis in Brive, France. Photonis became independent of Philips in 1998. In the USA, Bendix Research Laboratories in Ann Arbor, Michigan transferred to Galileo Electro-Optics Corporation (GEOC), Sturbridge, Massachusetts in 1972. In 1999 GEOC was purchased by Burle Industries and became Burle Electro Optics. In 2005 Burle Electro Optics was purchased by Photonis and is currently Photonis USA.

References

  • Adams J, Manley BW (1966) The mechanism of channel electron multiplication. IEEE Trans Nucl Sci NS-13:88–99

    Article  ADS  Google Scholar 

  • Ainbund MR, Alekseev AN, Alymov OV (plus six authors) (2012) Solar-blind UV photocathodes based on AlGaN heterostructures with a 300 to 350 nm spectral sensitivity threshold. Techn Phys Lett 38:439–442

    Google Scholar 

  • Beaulieu DR, Gorelikov D, de Rouffignac P (plus four authors) (2009) Nano-engineered ultra high gain microchannel plates. Nucl Instr Meth Phys A 607:81–84

    Google Scholar 

  • Blodgett KB (1951) Surface conductivity of lead silicate glass after hydrogen treatment. J Am Ceram Soc 34:14–27

    Article  Google Scholar 

  • Boutot JP, Eschard G, Polaert R, Duchenois V (1974) A microchannel plate with curved channels: an improvement in gain, relative variance and ion noise for channel plate tubes. Proc of Sixth Symposium on Photo-electronic Image Devices, London, pp 103–111

    Google Scholar 

  • Breeveld AA, Edgar ML, Smith A (plus two authors) (1992) A SPAN MCP detector for the SOHO Coronal Diagnostics Spectrometer. Rev Sci Instrum 63:673–676

    Google Scholar 

  • Clampin M, Paresce F (1989) Photon-counting imaging with a GaAs photocathode: evaluation of the Red-RANICON for astronomical imaging. Astron Astrophys 225:578–584

    ADS  Google Scholar 

  • Corbett MB, Feller WB, Laprade BN (plus four authors) (1992) Development Efforts to Improve Curved-channel Microchannel Plates. Proc SPIE 1764:240–251

    Google Scholar 

  • Csorba IP (1980) Current gain parameters of microchannel plates. Appl Opt 19:3863–3866

    Article  ADS  Google Scholar 

  • Csorba IP (1985a) Phosphor screens, in image tubes. Howard W Sams & Co, Inc, (Publishing Subsidiary of ITT), 29–42

    Google Scholar 

  • Csorba IP (1985b) Image intensifier tube types, in Image Tubes, Howard W Sams & Co, Inc, (Publishing Subsidiary of ITT), 174–193

    Google Scholar 

  • Dabiran AM, Wowchak AM, Chow PP (plus four authors) (2009) Direct deposition of GaN photocathodes on microchannel plates. Proc SPIE 7212:721213-1–721213-6

    Google Scholar 

  • De Korte PAJ, Bleeker JAM, den Boggende AJF (plus six authors) (1981) The X-ray imaging telescopes on EXOSAT. Space Sci Rev 30:495–511

    Google Scholar 

  • Delendik K, Emeliantchik I, Litomin A (plus two authors) (2003) Aluminum oxide microchannel plates. Nucl Phys B 125:394–399

    Google Scholar 

  • Diebold S, Barnstedt J, Elsener H-R (plus nine authors) (2012) MCP detector development for WSO-UV. Proc SPIE 8443:84432X-1–84432X-8

    Google Scholar 

  • Drobychev G, Barysevich A, Delendik K (plus four authors) (2007) Development of micro-channel plates on the basis of aluminum oxide. Nucl Instr Meth A 567:290–293

    Google Scholar 

  • Drobychev G, Barysevich A, Delendik K (plus three authors) (2009) Advances in anodic Alumina MCP development. Nucl Inst Meth Phys A 610:246–248

    Google Scholar 

  • Evans DS (1965) Low energy charged-particle detection using the continuous-channel electron multiplier. Rev Sci Instrum 36:375–382

    Article  ADS  Google Scholar 

  • Eschard G, Manley BW (1971) Principles and characteristics of channel electron multipliers. Acta Electronica 14:19–39

    Google Scholar 

  • Farnsworth PT (1930) Electron multiplier, US Patent number 1 969 399

    Google Scholar 

  • Giacconi R, Branduardi G, Briel U (plus 28 authors) The Einstein (HEAO 2) X-ray observatory. Astrophys J 230:540–550

    Google Scholar 

  • Giaretta G, Horch E, Timothy JG, Heanue JF (1993) Time-tag photon detection with the MAMA detector system. Proc SPIE 1952:316–328

    Article  ADS  Google Scholar 

  • Goodrich GW, Wiley WC (1962) Continuous channel electron multiplier. Rev Sci Instrum 33:761–762

    Article  ADS  Google Scholar 

  • Griffiths NW, Airieau S, Siegmund OHW (1998) In-flight performance of the SUMER microchannel plate detectors. Proc SPIE 3446:566–577

    Article  Google Scholar 

  • Guest AJ (1971) A computer model of channel multiplier plate performance. Acta Electronica 14:79–97

    Google Scholar 

  • Gull TR, Lindler DJ, Crenshaw DM (plus eight authors) (1998) Space telescope imaging spectrograph near-ultraviolet time-tagged spectra of the Crab pulsar. Astrophys J 495:L51–54

    Google Scholar 

  • Heroux L, Hinteregger HE (1960) Resistance strip magnetic electron multiplier for the extreme ultraviolet. Rev Sci Instrum 31:280–286

    Article  ADS  Google Scholar 

  • Horch E, Morgan JS, Giaretta G, Kasle DB (1992), A new speckle interferometry system for the MAMA detector. Pub Astron Soc Pacific 104:939–948

    Article  ADS  Google Scholar 

  • Horch E, Ninkov Z, van Altena WF (plus three authors) (1999) Speckle observations of binary stars with the WIYN telescope I. Measures during 1997. Astronom J 117:548–561

    Google Scholar 

  • Kasle DB, Morgan JS (1991) High resolution decoding of multi-anode microchannel array detectors. Proc SPIE 1549:52–58

    Article  ADS  Google Scholar 

  • Kasle DB, Horch EP (1992) Performance of high resolution decoding with multi-anode microchannel array detectors. Proc SPIE 1764:202–216

    Article  ADS  Google Scholar 

  • Kellogg E, Henry P, Murray S, Van Speybroek L (1976), High-resolution imaging X-ray detector. Rev Sci Instrum 47:282–290

    Article  ADS  Google Scholar 

  • Kimble RA, Woodgate BE, Bowers C (plus 50 authors) (1998) The on-orbit performance of the Space Telescope Imaging Spectrograph, Proc SPIE 3356:188–202

    Google Scholar 

  • Kimble RA, Abraham J, Argebright VS (plus 15 authors) (1999) In-flight performance of the MAMA detectors on the Space Telescope Imaging Spectrograph. Proc SPIE 3764:209–225

    Google Scholar 

  • Kohl JL, Gardner LD, Strachan L, Hassler DM (1994) Ultraviolet spectroscopy of the extended solar corona during the SPARTAN 201 Mission. Space Sci Rev 70:253–261

    Article  ADS  Google Scholar 

  • Lampton M, Paresce F (1974) The Ranicon: A resistive anode image converter. Rev Sci Instrum 45:1098–1105

    Article  Google Scholar 

  • Lampton M, Carlson CW (1979) Low-distortion resistive anodes for two-dimensional position-sensitive MCP systems. Rev Sci Instrum 50:1093–1097

    Article  ADS  Google Scholar 

  • Laprade B, Dykstra M, Langevin F (1996) The development of an ultra small pore microchannel plate for space sciences applications. (1996) Proc SPIE 2808:72–85

    Article  ADS  Google Scholar 

  • Laprade B, Cochran RC, Langevin F, Dykstra MW (1997) Characterization of an ultra small pore microchannel plate. Proc SPIE 3173:474–485

    Article  ADS  Google Scholar 

  • Laprade B, Starcher R (2001) The 2 micron pore microchannel plate. Photonis USA, Sturbridge MA

    Google Scholar 

  • Lawrence GM, McClintock WE (1996) Compact ultraviolet imaging microchannel plate detectors using CODed Anode Convertor (CODACON) readout systems. Proc SPIE 2831: 104–111

    Article  ADS  Google Scholar 

  • Macar PJ, Rechavi J, Huber MCE, Reeves EM (1970) Solar-blind photoelectric detection systems for satellite applications. Appl Opt 9:581–593

    Article  ADS  Google Scholar 

  • Martin C, Jelinsky P, Lampton M, Malina RF (1981) Wedge-and-strip anodes for centroid position sensitive photon and particle detectors. Rev Sci Instrum 52:1067–1074

    Article  ADS  Google Scholar 

  • Mason IM, Braduardi-Raymont G, Culhane JL (plus three authors) The EXOSAT imaging X-ray detectors. (1984) IEEE Trans Nucl Sci NS-31:795–800

    Article  ADS  Google Scholar 

  • McClintock WE, Barth CA, Steele RE (plus two authors) (1982) Rocket-borne instrument with a high resolution microchannel plate detector for planetary UV astronomy. Appl Opt 21:3071–3079

    Google Scholar 

  • McClintock WE, Lawrence GM, Kohnert RA, Esposito LW (1993) Optical design of the Ultraviolet Imaging Spectrograph for the Cassini mission to Saturn. Opt Engineering 32:3038–3046

    Article  ADS  Google Scholar 

  • McClintock WE, Lawrence GM (1996) Low-mass, Low-power Ultraviolet Telescope-Imaging Spectrograph for Planetary Atmosphere Remote Sensing. Proc SPIE 2807:256–266

    Article  ADS  Google Scholar 

  • McPhate JB, Siegmund OH, Gaines G (plus two authors) (2000) The Cosmic Origins Spectrograph FUV detector. Proc SPIE 4139:25–33

    Google Scholar 

  • McPhate JB, Siegmund OH, Vallerga JV (plus eight authors) (2010) Hubble Space Telescope: Cosmic Origins Spectrograph FUV detector initial on-orbit performance. Proc SPIE 77322H, pp 7

    Google Scholar 

  • Morgan JS, Timothy JG, Smith AM (plus two authors) (1990) High time-resolution imaging with the MAMA detector systems, Proc SPIE 1235:347–357

    Google Scholar 

  • Morrissey P (2006) A GALEX instrument overview and lessons learned. Proc SPIE 6266:62660Y1-15

    Google Scholar 

  • Murray SS, Austin GK, Chappell JH (plus seven authors) (2000) In-flight performance of the Chandra High Resolution Camera. Proc SPIE 4012:68–80

    Google Scholar 

  • Norton TJ, Woodgate BE, Stock J (plus four authors) (2003) Results from Cs activated GaN photocathode development for MCP detector systems at NASA GSFC. Proc SPIE 5164:155–164

    Google Scholar 

  • Oliveira CM, Aloisi A, Ely J (plus seven authors) (2012) A fresh start for the COS FUV detector. Amer Astron Soc Meeting 220, 136.03

    Google Scholar 

  • Oschepkov PK, Skvortsov BN, Osanov BA, Sibrikov I (1960) Application of a continuous secondary electron multiplication for amplifying small currents (Translation). Pribory Tekh Eksper 4:89–91

    Google Scholar 

  • Piore ER, Harvey GG, Gyorgy EM, Kingston RH (1952) A high vacuum recording spectrograph for the study of radiation from solids in the 100–800 Å range. Rev Sci Instrum 23:8–12

    Google Scholar 

  • Proffitt CR, Aloisi A, Bohlin RC (plus 16 authors) (2010) Performance of the Space Telescope Imaging Spectrograph after SM4. The 2010 STScI Calibration Workshop: 47–56

    Google Scholar 

  • Reeves EM, Huber MCE, Timothy JG (1977) Extreme UV spectroheliometer on the Apollo Telescope Mount. Appl Opt 16:837–857

    ADS  Google Scholar 

  • Ritala M and Leskalä M (1999) Atomic layer epitaxy – a valuable tool for nanotechnology? Nanotechnology 10:19

    Article  ADS  Google Scholar 

  • Roman PA, Brickerhoff WB, Getty SA (plus five authors) (2008) A miniature MEMS and NEMS enabled time-of-flight mass spectrometer for investigations in planetary science. Proc SPIE 6959:6959G-1–13

    Google Scholar 

  • Sahnow DJ (2003) The FUSE detectors: on orbit use and lessons learned. Proc SPIE 4854:610–619

    Article  ADS  Google Scholar 

  • Sahnow DJ, Oliviera C, Aloisi A (plus ten authors) (2011) Gain sag in the FUV detector of the Cosmic Origins Spectrograph. Proc SPIE 8145:poster session

    Google Scholar 

  • Sahnow D, Ake T, Penton S (plus two authors) (2011) COS NUV detector dark rates during SMOV and Cycle 17. STScI Instrument Science Report COS 2010-12

    Google Scholar 

  • Schühle U (2013) Intensified solid state sensor cameras: ICCD and IAPS. ISSI SR-009:455–465

    Google Scholar 

  • Siegmund OHW, Malina RF, Coburn K, Werthimer D (1984) Microchannel plate EUV detectors for the Extreme Ultraviolet Explorer. IEEE Trans Nucl Sci NS-31:776–779

    Article  ADS  Google Scholar 

  • Siegmund OHW, Coburn K, Malina RF (1985) Investigation of large format microchannel plate Z configurations. IEEE Trans Nucl Sci NS-32:443–447

    Article  ADS  Google Scholar 

  • Siegmund OHW, Lampton M, Bixler J (plus two authors) (1986) Operational characteristics of wedge and strip readout systems. IEEE Trans Nucl Sci 33:724–727

    Google Scholar 

  • Siegmund OHW, Everman E, Vallerga JV (plus two authors) (1987) Ultraviolet quantum detection efficiency of potassium bromide as an opaque photocathode applied to microchannel plates. Appl Opt 26:3607–3614

    Google Scholar 

  • Siegmund OHW, Cully SL, Gaines GA (plus three authors) (1990) Highly curved microchannel plates, EUV, X-ray and Gamma-ray instrumentation for astronomy. Proc SPIE 1344:346–354

    Google Scholar 

  • Siegmund OHW, Gummin M, Stock J (plus three authors) (1993) High resolution monolithic delay line readout techniques for two dimensional microchannel plate detectors. Proc SPIE 2006:176–186

    Google Scholar 

  • Siegmund OHW, Gummin M, Stock J (plus ten authors) (1997) Performance of the double delay line microchannel plate detectors for the Far Ultraviolet Spectroscopic Explorer. Proc SPIE 3114:283–294

    Google Scholar 

  • Siegmund OHW, Stock JM, Marsh DR (plus 17 authors) (1994) Delay line detectors for the UVCS and SUMER instruments on the SOHO satellite, EUV, X-ray, and Gamma-ray instrumentation for astronomy. Proc SPIE 2280:89–100

    Google Scholar 

  • Siegmund OHW, Gummin MA, Sasseen T (plus eight authors) (1995) Microchannel Plates for the UVCS and SUMER instruments on the SOHO satellite. Proc SPIE 2518:344–355

    Google Scholar 

  • Siegmund OHW, Jelinsky P, Jelinsky S (plus six authors) (1999) High-resolution cross delay line detectors for the GALEX mission. Proc SPIE 3765:429–440

    Google Scholar 

  • Siegmund OHW, Tremsin AS, Vallerga JV, Hull J (2001) Cross strip imaging anodes for microchannel plate detectors. IEEE Trans Nucl Sci 48:430–434

    Article  ADS  Google Scholar 

  • Siegmund OHW, Vallerga JV, McPhate J, Tremsin AS (2004) Next generation microchannel plate detector technologies for UV Astronomy. Proc SPIE 5488:789–800

    Article  ADS  Google Scholar 

  • Siegmund OHW, Vallerga J, Tremsin A, McPhate J (2007) Microchannel plates: Recent advances in performance. Proc SPIE 6686, web reference 66860W

    Google Scholar 

  • Siegmund OHW, Hall JS, Tremsin AS (plus two authors) (2010) Gallium nitride photocathodes for imaging photon counters. Proc SPIE 7732:4T-1–9

    Google Scholar 

  • Siegmund OHW, Fujiwara K, Hemphill R (plus 13 authors) (2011) Advances in microchannel plates and photocathodes for ultraviolet photon counting detectors. Proc SPIE 8145:81450J-1–12

    Google Scholar 

  • Slater DC, Timothy JG, Morgan JS, Kasle DB (1990) Imaging MAMA Detector Systems. Proc SPIE 1243:35–49

    Article  ADS  Google Scholar 

  • Smith AM, Hill RS, Vrba FJ, Timothy JG (1992) Far-ultraviolet MAMA detector imagery and emission-line CCD imagery of NGC 6240. Astrophys J 391:L81–84

    Article  ADS  Google Scholar 

  • Sommer AH, Photoemissive Materials (1980) Robert E Krieger Publishing Company, Huntington, New York

    Google Scholar 

  • Spicer WE (1975) Negative electron affinity photocathode research and technology. IEEE Electron Devices 21:57–59

    Google Scholar 

  • Timothy AF, Timothy JG, Willmore AP (1967) The performance of open structure photomultipliers in the 1100-Å to 250-Å wavelength region. Appl Opt 6:1319–1326

    Article  ADS  Google Scholar 

  • Timothy JG, Bybee RL (1977a) Preliminary results with microchannel plates employing curved microchannels to inhibit ion feedback. Rev Sci Instrum 48:292–299

    Article  ADS  Google Scholar 

  • Timothy JG, Bybee RL (1977b), Multi-anode microchannel arrays. Proc SPIE 116:24–32

    Article  ADS  Google Scholar 

  • Timothy JG, Lapson LB (1974) Use of channel electron multipliers as secondary standard detectors at EUV wavelengths. Appl Opt 13:1417–1430

    Article  ADS  Google Scholar 

  • Timothy JG, Reeves EM, Chambers RM (plus two authors) (1975) A sounding rocket spectroheliometer for photometric studies at extreme ultraviolet wavelengths. Space Sci Instrum 1:23–49

    Google Scholar 

  • Timothy JG (1981) Curved-channel microchannel array plates. Rev Sci Instrum 52:1131–1142

    Article  ADS  Google Scholar 

  • Timothy JG, Bergamini P, Berger TE (plus two authors) (1993) Performance characteristics of the MAMA detectors for the SUMER instrument on the SOHO Mission. Proc SPIE 2006:69–76

    Google Scholar 

  • Timothy JG (1994) Recent advances with the MAMA detector systems. Proc SPIE 2278:134–137

    Article  ADS  Google Scholar 

  • Timothy JG, Wilhelm K, Xia L (2013) The extra-terrestrial vacuum-ultraviolet wavelength range. ISSI SR-009:93–120

    Google Scholar 

  • Tran HD, Meurer G, Ford HC (plus nine authors) (2002) On-orbit performance of the ACS solar blind channel. STScI 2002 Calibration Workshop:86–89

    Google Scholar 

  • Tremsin AS, Vallerga JV, Siegmund OHW (plus two authors) (2004) Thermal dependence of electrical characteristics of micromachined silica microchannel plates. Rev Sci Instr 75:1068–1072

    Google Scholar 

  • Tremsin AS, Siegmund OHW (2005) The quantum efficiency and stability of UV and soft X-ray photocathodes. Proc SPIE 5920:1–13

    Google Scholar 

  • Tremsin AS, Siegmund OHW, Vallerga JV, Hull JS (2006) Novel high resolution readout for UV and X-ray photon counting detectors with microchannel plates. Proc SPIE 6276:627616-1–627616-11

    Google Scholar 

  • Trümper J (1984) ROSAT. Physica Scripta T7:209–215

    Article  ADS  Google Scholar 

  • Uslenghi M, Incorvaia S, Fiorini M (2012) (plus 11 authors) A prototype of the UV detector for MATIS on Solar Orbiter. Proc SPIE 8443:84433I-1–84433I-9

    Google Scholar 

  • Vallerga JV, Eckert M, Sirk M (1994) (plus two authors) Long-term orbital performance of the MCP detectors aboard the Extreme Ultraviolet Explorer. Proc SPIE 2280:57–68

    Article  ADS  Google Scholar 

  • Vallerga J, McPhate J, Martin A (plus five authors) (2001) The HST-COS Far Ultraviolet Detector: Final ground calibration. Proc SPIE 4498:141–151

    Google Scholar 

  • Waltham N (2013) CCD and CMOS sensors. ISSI SR-009:423–442

    Google Scholar 

  • Washington D (1971) Improvements in or relating to Electron Multipliers. UK Patent 1352732

    Google Scholar 

  • Washington D, Duchenois V, Polaert R, Beasley RM (1971) Technology of channel plate manufacture. Acta Electronica 14:201–224

    Google Scholar 

  • Weisskopf MC, Brinkman B, Canizares C (plus three authors) (2002) An overview of the performance and scientific results from the Chandra X-Ray observatory. Publ Astron Soc Pacific 114:1–24

    Google Scholar 

  • Wiley WC, Hendee CF (1962) Electron multipliers utilizing continuous strip surfaces. IRE Trans Nucl Sci NS-9:103–106

    Article  ADS  Google Scholar 

  • Wilhelm K, Lemaire P, Curdt W (plus 16 authors) (1997) First Results of the SUMER Telescope and Spectrometer on SOHO; I. Spectra and Spectroradiometry. Sol Phys 170:75–104

    Google Scholar 

  • Wilkinson E, Vincent M, Kofoed C (plus three authors) (2012) Southwest Research Institute intensified detector development capability. Proc SPIE 8443:84432K-1–84432K-7

    Google Scholar 

  • Wiza JL (1979) Microchannel plate detectors. Nucl Instrum Meth 162:587–601

    Article  ADS  Google Scholar 

  • Woodgate BE, Kimble RA, Bowers CW (plus 41 authors) (1998) The Space Telescope Imaging Spectrograph design. PASP 110:1183–1204

    Google Scholar 

  • Wuest M, Evans DS, McFadden JP (plus seven authors) (2007) Review of instruments. ISSI SR-007:11–101

    Google Scholar 

  • Young AT (1974) Photomultipliers: Their cause and cure, in Methods of Experimental Physics 12 (ed. N Carleton) Academic Press, New York and London, 1–94

    Google Scholar 

  • Zheng W, Proffitt C, Sahnow D (2011) Dark rate of the STIS NUV detector. STScI Instrument Science Report STIS 2011-03

    Google Scholar 

  • Zombeck MV, David LP, Harnden FR Jr, Kearns K (1995) Orbital performance of the high resolution imager on ROSAT. Proc SPIE 2518:304–320

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Timothy, J.G. (2013). Microchannel plates for photon detection and imaging in space. In: Huber, M.C.E., Pauluhn, A., Culhane, J.L., Timothy, J.G., Wilhelm, K., Zehnder, A. (eds) Observing Photons in Space. ISSI Scientific Report Series, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7804-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7804-1_22

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7803-4

  • Online ISBN: 978-1-4614-7804-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics