Skip to main content

Molecular Basis of Cytoplasmic Male Sterility

  • Chapter
  • First Online:
Biotechnology of Crucifers

Abstract

Cytoplasmic male sterility (CMS), a maternally inherited trait failing to produce functional pollens, is an alternative approach for utilization of hybrid vigor and hybrid seed production in Crucifer crops. CMS and its fertility restoration lines are also good system to explore the interaction between nuclear and mitochondrial genomes. Several cytoplasmic male sterility-associated genes, namely mitochondrial novel open reading frames (ORFs), had been identified from different sources of CMS, some of which were confirmed to be associated with CMS phenotypes by transgenic experiments. There were many molecular events occurring at transcriptional and/or editing levels pertaining to energy-related mitochondrial genes. Here, we reviewed the current advances in the research of genetic and molecular basis of CMS in crucifer crops. Thus, the understandings of CMS could help us to recognize the vital role of mitochondria and the manipulation of organellar genetics in practical breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashutosh, Sharma PC, Prakash S et al (2007) Identification of AFLP markers linked to the male fertility restorer gene of CMS (Moricandia arvensis) Brassica juncea and conversion to SCAR marker. Theor Appl Genet 114:385–392

    Article  PubMed  CAS  Google Scholar 

  • Ashutosh, Kumar P, Kumar DK et al (2008) A novel orf108 co-transcribed with the atpA gene is associated with cytoplasmic male sterility in Brassica juncea carrying Moricandia arvensis cytoplasm. Plant Cell Physiol 49(2):284–289

    Article  PubMed  CAS  Google Scholar 

  • Balk J, Leaver CJ (2001) The PET1-CMS mitochondrial mutation in sunflower is associated with premature programmed cell death and cytochrome c release. Plant Cell 13:1803–1818

    PubMed  CAS  Google Scholar 

  • Bhat SR, Vijayan P, Ashutosh et al (2006) Diplotaxis erucoides induced cytoplasmic male sterility in Brassica juncea is rescued by the Moricandia arvensis restorer: genetic and molecular analyses. Plant Breed 125:150–155

    Article  CAS  Google Scholar 

  • Bhat SR, Kumar P, Prakash S (2008) An improved cytoplasmic male sterile (Diplotaxis berthautii) Brassica juncea: identification of restorer and molecular characterization. Euphytica 159:145–152

    Article  CAS  Google Scholar 

  • Bonhomme S, Budar F, Lancelin D, Small I, Defrance MF, Pelletier G (1992) Sequence and analysis of Nco2.5 Ogura-specific fragment correlated with male sterility in Brassica cybrids. Mol Genomics Genet 235:240–248

    Google Scholar 

  • Brown GG, Mona D (1998) Molecular analysis of Brassica CMS and its application to hybrid seed production. Acta Hortisci 459:265–274

    CAS  Google Scholar 

  • Budar F, Pelletier G (2001) Male sterility in plant: occurrence, determinism, significance and use. Life Sci 324:543–550 Chaumont F, Bernier B, Buxant R et al (1995) Targeting the maize T-urf13 product into tobacco mitochondria confers methomyl sensitivity to mitochondrial respiration. Proceedings of the National Academy of Sciences USA 92:1167–1171

    CAS  Google Scholar 

  • Chen J, Guan R, Chang S et al (2011) Substoichiometrically different mitotypes coexist in mitochondrial genomes of Brassica napus L. PLoS One 6:e17662

    Article  PubMed  CAS  Google Scholar 

  • Cho Y, Lee Y, Park B et al (2012) Construction of a high-resolution linkage map of Rfd1, a restorer-of-fertility locus for cytoplasmic male sterility conferred by DCGMS cytoplasm in radish (Raphanus sativus L.) using synteny between radish and Arabidopsis genomes. Theor Appl Genet 125:467–477

    Article  PubMed  CAS  Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    Article  PubMed  CAS  Google Scholar 

  • Desloire SH, Gherbil W, Laloui S et al (2003) Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide-repeat protein family. EMBO Rep 4:588–594

    Article  PubMed  CAS  Google Scholar 

  • Dewey RE, Levings CS III, Timothy DH (1986) Novel recombinations in the maize mitochondrial genome produce a unique transcriptional unit in the Texas male-sterile cytoplasm. Cell 44:439–449

    Article  PubMed  CAS  Google Scholar 

  • Dewey RE, Timothy DH, Levings CS III (1987) A mitochondrial protein associated with cytoplasmic male sterility in the T-cytoplasm of maize. Proc Natl Acad Sci U S A 84:5374–5378

    Article  PubMed  CAS  Google Scholar 

  • Dieterich JH, Braun HP, Schmitz UK (2003) Alloplasmic male sterility in Brassica napus (CMS ‘Tournefortii-Stiewe’) is associated with a special gene arrangement around a novel atp9 gene. Mol Genet Genomics 269:723–731 Duroc Y, Gaillard C, Hiard S et al (2006) Nuclear expression of a cytoplasmic male sterility gene modifiers mitochondrial morphology in yeast and plant cell. Plant Science 170:755–767

    Article  PubMed  CAS  Google Scholar 

  • Fauron C, Casper M, Gao Y et al (1995) The maize mitochondrial genome: dynamic, yet functional. Trends Genet 11:228–235

    Article  PubMed  CAS  Google Scholar 

  • Feng X, Kaur AP, Mackenzie SA et al (2009) Substoichiometric shifting in the fertility reversion of cytoplasmic male sterility pearl millet. Theor Appl Genet 118:1361–1370

    Article  PubMed  CAS  Google Scholar 

  • Formanová N, Stollar R, Geddy R et al (2010) High-resolution mapping of the Brassica napus Rfp restorer locus using Arabidopsis -derived molecular markers. Theor Appl Genet 120:843–851

    Article  PubMed  Google Scholar 

  • Gomez-Casati DF, Busi MV, Gonzalez-Schain N et al (2002) A mitochondrial dysfunction induces the expression of nuclear-encoded complexIgenes in engineered male sterile Arabidopsis thaliana. Fed Eur Biochem Soc Lett 532:70–74

    Article  CAS  Google Scholar 

  • Hama E, Takumi S, Ogihara Y et al (2004) Pistillody is caused by alteration to the class-B MADS-box gene expression pattern in alloplasmic wheats. Planta 218:712–720

    Article  PubMed  CAS  Google Scholar 

  • Handa H, Nakajima K (1992) Different organization and altered transcription of the mitochondrial atp6 gene in the male-sterile cytoplasm of rapeseed (Brassica napus L.). Curr Genet 21:153–159

    Article  PubMed  CAS  Google Scholar 

  • Hanson MR, Bentolila S (2004) Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16S:154–169

    Google Scholar 

  • Ito T, Wellmer F, Yu H et al (2004) The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS. Nature 430:356–360

    Article  PubMed  CAS  Google Scholar 

  • Janska H, Sarria R, Woloszynska M et al (1998) Stoichiometric shifts in the common bean mitochondrial genome leading to male sterility and spontaneous reversion to fertility. Plant Cell 10:1163–1180

    PubMed  CAS  Google Scholar 

  • Jing B, Heng S, Tong D et al (2012) A male sterility-associated cytotoxic protein ORF288 in Brassica juncea cause aborted pollen development. J Exp Bot 63:1285–1295

    Article  PubMed  CAS  Google Scholar 

  • Karpova OV, Kuzmin EV, Elthon TE, Newton KJ (2002) Differential expression of alternative oxidase genes in maize mitochondrial mutants. Plant Cell 14:3271–3284

    Article  PubMed  CAS  Google Scholar 

  • Kofer W, Glimelius K, Bonnett HT (1991) Modification of mitochondrial DNA cause changes in floral development in homeotic-like mutants of tobacco. Plant Cell 3:759–769

    PubMed  CAS  Google Scholar 

  • Koizuka NR, Imai R, Fujimoto H et al (2003) Genetic characterization of a pentatricopeptide repeat protein gene, orf687, that restores fertility in the cytoplasmic male-sterile Kosena radish. Plant J 34:407–415

    Article  PubMed  CAS  Google Scholar 

  • Kumar P, Vasupalli N, Srinivasan R et al (2012) An evolutionarily conserved mitochondrial orf108 is associated with cytoplasmic male sterility in different alloplasmic lines of Brassica juncea and induces male sterility in transgenic Arabidopsis thaliana. J Exp Bot 63:2921–2932

    Article  PubMed  CAS  Google Scholar 

  • L’Homme Y, Stahl RJ, Li XQ, Hammeed A, Brown GG (1997) Brasicca nap cytoplasmic male sterility is associated with expression of a mtDNA region containing a chimeric gene similar to the pol CMS-associated orf224 gene. Curr Genet 31:325–335

    Article  PubMed  Google Scholar 

  • Landgren M, Zetterstrand M, Sundberg E et al (1996) Alloplasmic male-sterile Brassica lines containing B. tournefortii mitochondria express an ORF 3’ of the atp6 gene and a 32 kDa protein. Plant Mol Biol 32:879–890

    Article  PubMed  CAS  Google Scholar 

  • Laser KD, Lersten NR (1972) Anatomy and cytology of microsporogenesis in cytoplasmic male-sterile angiosperms. Bot Rev 38:425–454

    Article  Google Scholar 

  • Leino M, Teixeira R, Landgren M, Glimelius K (2003) Brassica napus lines with rearranged Arabidopsis mitochondria display CMS and a range of development aberrations. Theor Appl Genet 106:1156–1163 Linke B, Nothnagel T, Börner T (1999) Morphological characterization of modified flower morphology of three novel alloplasmic male sterile carrot sources. Plant Breeding 118:543–548

    PubMed  CAS  Google Scholar 

  • Linke B, Nothnagel T, Borner T (2003) Flower development in carrot cms plant: mitochondria affect the expression of MADS box genes homologous to GLOBOSA and DEFICIENS. Plant J 34:27–37

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Liu P, Long F et al (2012) Fine mapping and candidate gene analysis of the nuclear restorer gene Rfp for pol CMS in rapeseed (Brassica napus L.). Theor Appl Genet 125:773–779

    Article  PubMed  CAS  Google Scholar 

  • Lurin C, Andres C, Aubourg S et al (2004) Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16:2089–2103

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie SA (2005) The mitochondrial genome of higher plants: A target for natural adaptation. Diversity and Evolution of Plants, R. J. Henry, ed. CABI Publishers, Oxon, UK. pp. 69–80

    Google Scholar 

  • Mackenzie S, McIntosh L (1999) Higher plant mitochondria. Plant Cell 11:571–585

    PubMed  CAS  Google Scholar 

  • Maier RM, Zeltz P, Kossel H et al (1996) RNA editing in plant mitochondria and chloroplasts. Plant Mol Biol 32:343–365 Marienfeld JR, Unseld M, Brandt P et al (1997) Mosaic open reading frames in the Arabidopsis thaliana mitochondrial genome. Biological Chemistry 378:859–862

    Article  PubMed  CAS  Google Scholar 

  • Murai K, Tsunewaki K (1993) Photoperiod-sensitive cytoplasmic male sterility in wheat with Aegilops crassa cytoplasm. Euphytica 67:41–48

    Article  Google Scholar 

  • Murai K, Takumi S, Koga H et al (2002) Pistillody, homeotic transformation of stamens into pistil-like structures, caused by nuclear-cytoplasm interaction in wheat. Plant J 29:169–181

    Article  PubMed  Google Scholar 

  • Niemelä T, Seppanen M, Badakshi F et al (2012) Size and location of radish chromosome regions carrying the fertility restorer Rfk1 gene in spring turnip rape. Chromosome Res 20:35–361

    Article  Google Scholar 

  • Ogura H (1968) Studies on the new male sterility in Japanese radish with special references to the utilization of this sterility towards the practical raising of hybrid seed. Mem Fac Agr Kogoshima Univ 6:39–78

    Google Scholar 

  • Pradhan AK, Mukhopadhyay A, Pental D (1991) Identification of the putative cytoplasmic donor of a CMS system in Brassica juncea. Plant Breed 106:204–208

    Article  Google Scholar 

  • Prakash S, Chopra VL (1990) Male sterility caused by cytoplasm of Brassica oxyrrhina in B. campestris and B. juncea. Theor Appl Genet 79:285–287

    Article  Google Scholar 

  • Prakash S, Kirti PB, Bhat SR et al (1998) A Moricandia arvensis-based cytoplasmic male sterility and fertility restoration system in Brassica juncea. Theor Appl Genet 97:488–492

    Article  CAS  Google Scholar 

  • Prakash S, Ahuja I, Upreti HC et al (2001) Expression of male sterility in alloplasmic Brassica juncea with Erucastrum canariense cytoplasm and the development of a fertility restoration system. Plant Breed 120:479–482

    Article  Google Scholar 

  • Rao GV, Batra-Sarup V, Prakash S, Shivanna KR (1994) Development of a new cytoplasmic male-sterile system in Brassica juncea through wide hybridization. Plant Breed 112:171–174

    Article  Google Scholar 

  • Rhoades MM (1933) The cytoplasmic inheritance of male sterility in Zea mays. J Genet 27:71–93 Rurek M, Szklarczyk M, Adamczyk N et al (2001) Differences in editing of mitochondrial nad3 transcripts from cms and fertile carrots. Acta Biochimica Polonica 48:711–717

    Article  Google Scholar 

  • Sandhu APS, Abdelnoor RV, Mackenzie SA (2007) Transgenic induction of mitochondrial rearrangements for cytoplasmic male sterility in crop plants. Proc Natl Acad Sci U S A 104:1766–1770

    Article  PubMed  CAS  Google Scholar 

  • Schiefthaler U, Balasubramanian S, Sieber P et al (1999) Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proc Natl Acad Sci U S A 96:11664–11669

    Article  PubMed  CAS  Google Scholar 

  • Schnable PS, Wise RP (1998) The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci 3:175–180

    Article  Google Scholar 

  • Shedge V, Arrieta-Montiel M, Christensen AC et al (2007) Plant mitochondrial recombination surveillance requires unusual RecA and MutS homologs. Plant Cell 19:1251–1264

    Article  PubMed  CAS  Google Scholar 

  • Singh M, Brown GG (1991) Suppression of cytoplasmic male sterility by nuclear genes alters expression of a novel mitochondria gene region. Plant Cell 3:1349–1362

    PubMed  CAS  Google Scholar 

  • Small I, Suffolk R, Leaver CJ (1989) Evolution of plant mitochondrial genomes via substoichiometric intermediates. Cell 58:69–76

    Article  PubMed  CAS  Google Scholar 

  • Teixeira RT, Farbos I, Glimelius K (2005) Expression levels of meristem identity and homeotic genes are modified by nuclear-mitochondrial interactions in alloplasmic male-sterile lines of Brassica napus. Plant J 42:731–742

    Article  PubMed  CAS  Google Scholar 

  • Theissen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4:75–85

    Article  PubMed  CAS  Google Scholar 

  • Unseld M, Marienfeld JR, Brandt P et al (1997) The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat Genet 15:57–61

    Article  PubMed  CAS  Google Scholar 

  • Wan Z, Jing B, Tu J et al (2008) Genetic characterization of a new cytoplasmic male sterility system (hau) in Brassica juncea and its transfer to B-napus. Theor Appl Genet 116:355–362

    Article  PubMed  Google Scholar 

  • Wang C, Chen X, Lan T et al (2006a) Cloning and transcript analysis of the chimeric gene associated with cytoplasmic male sterility in cauliflower (Brasscia oleracea var. Botrytis). Euphytica 151:111–121

    Article  CAS  Google Scholar 

  • Wang ZH, Zou YJ, Li XY et al (2006b) Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell 18:676–687

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Chen X, Li H et al (2007) RNA editing analysis of mitochondrial nad3/rps12 genes in cytoplasmic male sterility and male-fertile cauliflower (Brassica oleracea var. botrytis) by cDNA-SSCP. Bot Stud 48:13–23 Wintz H, Chen HC, Sutton CA et al (1995) Expression of the CMS-associated urfS sequence in transgenic petunia and tobacco. Plant Molecular Biology 28:83–92

    CAS  Google Scholar 

  • Woodson JD, Chory J (2008) Coordination of gene expression between organellar and nuclear genomes. Nat Rev Genet 9:383–395

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Arrieta-Montiel M, Virdi KS et al (2011) Muts homolog1 is a nucleoid protein that alters mitochondrial and plastid properties and plant response to high light. Plant Cell 23:3428–3441

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Santamaria R, Virdi KS et al (2012) The chloroplast triggers developmental reprogramming when MUTS homolog1 is suppressed in plants. Plant Physiol 159:710–720

    Article  PubMed  CAS  Google Scholar 

  • Yang WC, Ye D, Xu J et al (1999) The SPOROCYTELESS of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes Dev 13:2108–2117

    Article  PubMed  CAS  Google Scholar 

  • Yang JH, Zhang MF, Yu JQ et al (2005) Identification of alloplasmic cytoplasmic male-sterility line of leaf mustard synthesized by intra-specific hybridization. Plant Sci 168:865–871

    Article  CAS  Google Scholar 

  • Yang JH, Zhang MF, Yu JQ (2007) Alterations of RNA editing for mitochondrial atp9 gene in new orf220-type cytoplasmic male-sterile line of stem mustard (Brassica juncea Coss. var. tumida Tsen et Lee). J Integr Plant Biol 49:672–677

    Article  CAS  Google Scholar 

  • Yang JH, Zhang MF, Yu JQ (2008a) MADS-box genes are associated with cytoplasmic homeosis in cytoplasmic male-sterile stem mustard as partially mimicked by specifically inhibiting mtETC. Plant Growth Regul 56:191–201

    Article  CAS  Google Scholar 

  • Yang JH, Zhang MF, Yu JQ (2008b) Relationship between cytoplasmic male sterility and SPL-like gene expression in stem mustard. Physiol Plant 133:426–434

    Article  PubMed  CAS  Google Scholar 

  • Yang JH, Yan H, Zhang MF (2009a) Mitochondrial atpA gene is altered in a new orf220-type cytoplasmic male-sterile line of stem mustard (Brassica juncea). Mol Biol Rep 36:273–280

    Article  PubMed  CAS  Google Scholar 

  • Yang JH, Zhang MF, Yu JQ (2009b) Mitochondrial nad2 gene is co-transcripted with CMS-associated orfB gene in cytoplasmic male-sterile stem mustard (Brassica juncea). Mol Biol Rep 36:345–351

    Article  PubMed  CAS  Google Scholar 

  • Yang JH, Liu XY, Yang XD, Zhang MF (2010) Mitochondrially-targeted expression of a cytoplasmic male sterility-associated orf220 gene causes male sterility in Brassica juncea. BMC Plant Biol 10:231

    Article  PubMed  Google Scholar 

  • Yang XD, Liu XY, Lv WH et al (2012) Reduced expression of BjRCE1 gene modulated by nuclear-cytoplasmic incompatibility alters auxin response in cytoplasmic male-sterile Brassica juncea. PLoS One 7:e38821

    Article  PubMed  CAS  Google Scholar 

  • Yasumot K, Terachi T, Yamagishi H (2009) A novel Rf gene controlling fertility restoration of Ogura male sterility by RNA processing of orf138 found in Japanese wild radish and its STS markers. Genome 52:495–504

    Article  Google Scholar 

  • Zhang MF, Chen LP, Wang BL et al (2003) Characterization of atpA and orf220 genes distinctively present in a cytoplasmic male-sterile line of tuber mustard. J Hortic Sci Biotech 78:837–841

    CAS  Google Scholar 

  • Zubko MK, Zubko E, Ryban AV et al (2001) Extensive development and metabolic alteration in cybrids Nicotiana tabacum (+Hyoscyamus niger) are caused by complex nuclear-cytoplasmic incompatatibility. Plant J 25:627–639

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements 

This work was supported by serial grants from the National Natural Science Foundation of China (30971994).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingfang Zhang Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yang, J., Zhang, M. (2013). Molecular Basis of Cytoplasmic Male Sterility. In: Gupta, S. (eds) Biotechnology of Crucifers. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7795-2_9

Download citation

Publish with us

Policies and ethics