Skip to main content

Metabolism and Detoxification of Phytoalexins from Crucifers and Application to the Control of Fungal Plant Pathogens

  • Chapter
  • First Online:
Biotechnology of Crucifers

Abstract

This chapter reviews the chemical structures of phytoalexins of crucifers, elicitors and plant sources, biological activities and metabolic pathways, with special focus on biosynthesis from primary building blocks and biotransformation by fungal pathogens. A new strategy that uses paldoxins to control phytopathogenic fungi is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

DAD:

Diode array detector

ESI:

Electrospray ionization

GLCB:

Glucobrassicin

HPLC:

High performance/pressure liquid chromatograph/y

IAN:

Indolyl-3-acetonitrile

IAO:

Indolyl-3-acetaldoxime

IMIT:

Indole-3-methylisothiocyanate

MS:

Mass spectrometry

NMR:

Nuclear magnetic resonance

UPLC:

Ultra high pressure liquid chromatograph/y

UV:

Ultraviolet

References

  • Bailey JA, Mansfield JW (1982) Phytoalexins. Blackie and Son, Glasgow, p 334

    Google Scholar 

  • Böttcher C, Westphal L, Schmotz C, Prade E, Scheel D, Glawischnig E (2009) The multifunctional enzyme CYP71B15 (phytoalexin deficient3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana. Plant Cell 21:1830–1845

    Article  PubMed  Google Scholar 

  • Essenberg M (2001) Prospects for strengthening plant defenses through phytoalexin engineering. Physiol Mol Plant Pathol 59:71–81

    Article  CAS  Google Scholar 

  • Hartmann T (2007) From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry 68:2831–2846

    Article  PubMed  CAS  Google Scholar 

  • Kutschy P, Mezencev R (2008) Indole phytoalexins from Brassicaceae: synthesis and anticancer activity. Targ Heterocycl Syst 12:120–148

    CAS  Google Scholar 

  • Mezencev R, Galizzi M, Kutschy P, Docampo R (2009) Trypanosoma cruzi: antiproliferative effect of indole phytoalexins on intracellular amastigotes in vitro. Exp Parasitol 122:66–69

    Article  PubMed  CAS  Google Scholar 

  • Nongbri PL, Johnson JM, Sherameti I, Glawischnig E, Halkier BA, Oelmüller R (2012) Indole-3-acetaldoxime-derived compounds restrict root colonization in the beneficial interaction between Arabidopsis roots and the endophyte Piriformospora indica. Mol Plant Microbe Interact 25:1186–1197

    Article  PubMed  CAS  Google Scholar 

  • Pedras MSC (2004) Prospects for controlling plant fungal diseases: alternatives based on chemical ecology and biotechnology. Can J Chem 82:1329–1335

    Article  Google Scholar 

  • Pedras MSC, Adio AM, Suchy M (2006) Detection, characterization and identification of crucifer phytoalexins using high-performance liquid chromatography with diode array detection and electrospray ionization mass spectrometry. J Chromatogr A 1133:172–183

    Article  PubMed  CAS  Google Scholar 

  • Pedras MSC, Ahiahonu PWK (2005) Metabolism and detoxification of phytoalexins and analogs by phytopathogenic fungi. Phytochemistry 66:391–411

    Article  PubMed  CAS  Google Scholar 

  • Pedras MSC, Hossain M (2006) Metabolism of crucifer phytoalexins in Sclerotinia sclerotiorum: detoxification of strongly antifungal compounds involves glucosylation. Org Biomol Chem 4:2581–2590

    Article  PubMed  CAS  Google Scholar 

  • Pedras MSC, Hossain S (2011) Interaction of phytoanticipins with plant fungal pathogens: indole glucosinolates are not metabolized but the corresponding desulfo-derivatives and nitriles are. Phytochemistry 72:2308–2316

    Article  PubMed  CAS  Google Scholar 

  • Pedras MSC, Jha M (2006) Toward the control of Leptosphaeria maculans: design, syntheses, biological activity and metabolism of potential detoxification inhibitors of the crucifer phytoalexin brassinin. Bioorg Med Chem 2006(14):4958–4979

    Article  Google Scholar 

  • Pedras MSC, Jha M, Ahiahonu PWK (2003) The synthesis and biosynthesis of phytoalexins produced by cruciferous plants. Curr Org Chem 7:1635–1647

    Article  CAS  Google Scholar 

  • Pedras MSC, Jha M, Okeola OG (2005) Camalexin induces detoxification of the phytoalexin brassinin in the plant pathogen Leptosphaeria maculans. Phytochemistry 66:2609–2616

    Article  PubMed  CAS  Google Scholar 

  • Pedras MSC, Jha M, Minic Z, Okeola OG (2007) Isosteric probes provide structural requirements essential for detoxification of the phytoalexin brassinin by the fungal pathogen Leptosphaeria maculans. Bioorg Med Chem 15:6054–6061

    Article  PubMed  CAS  Google Scholar 

  • Pedras MSC, Minic Z, Jha M (2008) Brassinin oxidase, a fungal detoxifying enzyme to overcome a plant defense: purification, characterization and inhibition. FEBS J 275:3691–3705

    Article  PubMed  CAS  Google Scholar 

  • Pedras MSC, Minic Z, Sarma-Mamillapalle VK (2009) Substrate specificity and inhibition of brassinin hydrolases, detoxifying enzymes from the plant pathogens Leptosphaeria maculans and Alternaria brassicicola. FEBS J 276:7412–7428 Pedras, MSC, Minic Z, Hossain, S (2012) Discovery of inhibitors and substrates of brassinin hydrolase: Probing selectivity with dithiocarbamate bioisosteres. Bioorg Med Chem 20:225–233

    Article  PubMed  CAS  Google Scholar 

  • Pedras MSC, Sarma-Mamillapalle VK (2012) The phytoalexins rapalexin A, brussalexin A and erucalexin: chemistry and metabolism in Leptosphaeria maculans. Bioorg Med Chem 20:3991–3996

    Article  PubMed  CAS  Google Scholar 

  • Pedras MSC, Sorensen JL (1998) Phytoalexin accumulation and production of antifungal compounds by the crucifer wasabi. Phytochemistry 49:1959–1965

    Article  CAS  Google Scholar 

  • Pedras MSC, Suchy M (2006) Design, synthesis, evaluation and antifungal activity of inhibitors of brassilexin detoxification in the plant pathogenic fungus Leptosphaeria maculans. Bioorg Med Chem 14:714–723

    Article  PubMed  CAS  Google Scholar 

  • Pedras MSC, Yaya EE (2010) Phytoalexins from Brassicaceae: news from the front. Phytochemistry 71:1191–1197 Pedras MSC, Yaya EE (2012) The first isocyanide of plant origin expands functional group diversity in cruciferous phytoalexins: synthesis, structure and bioactivity of isocyalexin A. Org Biomol Chem 10:3613–3616

    Article  PubMed  CAS  Google Scholar 

  • Pedras MSC, Yaya EE, Hossain S (2010) Unveiling the phytoalexin biosynthetic puzzle in salt cress: unprecedented incorporation of glucobrassicin into wasalexins A and B. Org Biomol Chem 8:5150–5158

    Article  PubMed  CAS  Google Scholar 

  • Pedras MSC, Yaya EE, Glawischnig E (2011) The phytoalexins from cultivated and wild crucifers: chemistry and biology. Nat Prod Rep 28:1381–1405

    Article  PubMed  CAS  Google Scholar 

  • Russell PE (2005) A century of fungicide evolution. J Agric Sci 143:11–25

    Article  CAS  Google Scholar 

  • Smith CJ (1996) Accumulation of phytoalexins: defence mechanism and stimulus response system. New Phytol 132:1–45

    Article  CAS  Google Scholar 

  • Takasugi M, Katsui N, Shirata A (1986) Isolation of three novel sulphur-containing phytoalexins from the Chinese cabbage Brassica campestris L. ssp. pekinensis (Cruciferae). Chem Commun 1077–1078

    Google Scholar 

  • Walters D, Walsh D, Newton A, Lyon G (2005) Induced resistance for plant disease control: maximizing the efficacy of resistance elicitors. Phytopathology 95:1368–1373

    Article  PubMed  CAS  Google Scholar 

  • VanEtten HD, Mansfield JW, Bailey JA, Farmer EE (1994) Two classes of plant antibiotics: phytoalexins versus “phytoanticipins”. Plant Cell 6:1191–1192

    PubMed  CAS  Google Scholar 

  • VanEtten HD, Matthews DE, Matthews PS (1989) Phytoalexin detoxification: importance for pathogenicity and practical implications. Annu Rev Phytopathol 27:143–164

    Article  PubMed  CAS  Google Scholar 

  • Warwick SI (2011) Brassicaceae in agriculture. In: Schmidt R, Bancroft I (eds) Genetics and genomics of the Brassicaceae, vol 9, Plant genetics and genomics: crops and models. Springer Science, New York, p 34

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Soledade C. Pedras Lic, Ph.D., D.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pedras, M.S.C. (2013). Metabolism and Detoxification of Phytoalexins from Crucifers and Application to the Control of Fungal Plant Pathogens. In: Gupta, S. (eds) Biotechnology of Crucifers. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7795-2_8

Download citation

Publish with us

Policies and ethics