Advertisement

The Sperm Epigenome: Implications for the Embryo

  • John R. Gannon
  • Benjamin R. Emery
  • Timothy G. Jenkins
  • Douglas T. Carrell
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 791)

Abstract

Recent advances, including the human genome project and numerous studies of cancer and other diseases, have shown that the genetic code is not simply limited to the sequence of the four bases of DNA but also includes epigenetic programming, heritable changes that affect gene expression [Riggs A, Martinssen R, Russo V (2007) Introduction. In: Riggs A, Martinssen R, Russo V (eds) Epigenetics mechanisms of gene regulation. Cold Spring Harbor Press, New York]. The science of epigenetics is important in understanding many diseases and biological processes, including in identifying the causes of disease and better understanding the mechanisms by which the environment can affect gene expression [Carrell Fertil Steril 97 (2):267–274, 2012]. This chapter will focus on the epigenome of sperm and particularly highlight the potential role of the sperm epigenome in embryogenesis.

The sperm epigenome is unique and highly specialized because of the unique nature and function of sperm and because of the diverse requirements for successful fertilization. Due to the need for motility, sperm chromatin must be compacted and highly organized. During spermiogenesis the chromatin is packaged tightly into the sperm head by the replacement of most histones with protamines. This allows for protection of the DNA from the hostile environment in the female reproductive tract. Remaining histones can have chemical modifications to the tails of the protein that either facilitate or repress gene transcription. Sperm, like embryonic stem cells, have a unique pattern of histone modifications that includes both activating and silencing marks in the promoters of genes associated with development. These bivalent marks, along with DNA hypomethylation, comprise a unique state in which the key genes are “poised” for possible activation in embryogenesis. Sperm epigenetic abnormalities have been linked with multiple diseases including male factor infertility and poor embryogenesis.

Keywords

Epigenetics Protamine Histone DNA methylation Embryogenesis 

References

  1. Abdalla H, Yoshizawa Y, Hochi S (2009a) Active demethylation of paternal genome in mammalian zygotes. J Reprod Dev 55(4):356–360. doi:JST.JSTAGE/jrd/20234 [pii]PubMedCrossRefGoogle Scholar
  2. Abdalla H, Hirabayashi M, Hochi S (2009b) Demethylation dynamics of the paternal genome in pronuclear-stage bovine zygotes produced by in vitro fertilization and ooplasmic injection of freeze-thawed or freeze-dried spermatozoa. J Reprod Dev 55(4):433–439. doi:doi:JST.JSTAGE/jrd/20229 [pii]Google Scholar
  3. Aoki VW, Emery BR, Liu L et al (2006a) Protamine levels vary between individual sperm cells of infertile human males and correlate with viability and DNA integrity. J Androl 27(6):890–898. doi: 10.2164/jandrol.106.000703 PubMedCrossRefGoogle Scholar
  4. Aoki VW, Liu L, Jones KP et al (2006b) Sperm protamine 1/protamine 2 ratios are related to in vitro fertilization pregnancy rates and predictive of fertilization ability. Fertil Steril 86(5):1408–1415. doi: 10.1016/j.fertnstert.2006.04.024 PubMedCrossRefGoogle Scholar
  5. Aoki VW, Christensen GL, Atkins JF et al (2006c) Identification of novel polymorphisms in the nuclear protein genes and their relationship with human sperm protamine deficiency and severe male infertility. Fertil Steril 86(5):1416–1422. doi: 10.1016/j.fertnstert.2006.04.033 PubMedCrossRefGoogle Scholar
  6. Arpanahi A, Brinkworth M, Iles D et al (2009) Endonuclease-sensitive regions of human spermatozoal chromatin are highly enriched in promoter and CTCF binding sequences. Genome Res 19(8):1338–1349. doi:gr.094953.109 [pii] 10.1101/gr.094953.109Google Scholar
  7. Aston KI, Punj V, Liu L et al (2012) Genome-wide sperm deoxyribonucleic acid methylation is altered in some men with abnormal chromatin packaging or poor in vitro fertilization embryogenesis. Fertil Steril 97(2):285–292. doi: 10.1016/j.fertnstert.2011.11.008 PubMedCrossRefGoogle Scholar
  8. Balhorn R, Reed S, Tanphaichitr N (1988) Aberrant protamine 1/protamine 2 ratios in sperm of infertile human males. Experientia 44(1):52–55PubMedCrossRefGoogle Scholar
  9. Benchaib M, Braun V, Ressnikof D et al (2005) Influence of global sperm DNA methylation on IVF results. Hum Reprod 20(3):768–773. doi: 10.1093/humrep/deh684 PubMedCrossRefGoogle Scholar
  10. Brewer L, Corzett M, Balhorn R (2002) Condensation of DNA by spermatid basic nuclear proteins. J Biol Chem 277(41):38895–38900. doi: 10.1074/jbc.M204755200 PubMedCrossRefGoogle Scholar
  11. Capco DG, Wan KM, Penman S (1982) The nuclear matrix: three-dimensional architecture and protein composition. Cell 29(3):847–858PubMedCrossRefGoogle Scholar
  12. Carrell DT (2012) Epigenetics of the male gamete. Fertil Steril 97(2):267–274. doi: 10.1016/j.fertnstert.2011.12.036 PubMedCrossRefGoogle Scholar
  13. Cockerill PN, Garrard WT (1986) Chromosomal loop anchorage of the kappa immunoglobulin gene occurs next to the enhancer in a region containing topoisomerase II sites. Cell 44(2):273–282PubMedCrossRefGoogle Scholar
  14. Conaway JW (2012) Introduction to theme “Chromatin, epigenetics, and transcription”. Annu Rev Biochem 81:61–64. doi: 10.1146/annurev-biochem-090711-093103 PubMedCrossRefGoogle Scholar
  15. Dada R, Kumar M, Jesudasan R et al (2012) Epigenetics and its role in male infertility. J Assist Reprod Genet 29(3):213–223. doi: 10.1007/s10815-012-9715-0 PubMedCrossRefGoogle Scholar
  16. Depa-Martynow M, Kempisty B, Jagodzinski PP et al (2012) Impact of protamine transcripts and their proteins on the quality and fertilization ability of sperm and the development of preimplantation embryos. Reprod Biol 12(1):57–72PubMedCrossRefGoogle Scholar
  17. Eden S, Cedar H (1994) Role of DNA methylation in the regulation of transcription. Curr Opin Genet Dev 4(2):255–259PubMedCrossRefGoogle Scholar
  18. Faure AK, Pivot-Pajot C, Kerjean A et al (2003) Misregulation of histone acetylation in Sertoli cell-only syndrome and testicular cancer. Mol Hum Reprod 9(12):757–763PubMedCrossRefGoogle Scholar
  19. Garrido N, Martinez-Conejero JA, Jauregui J et al (2009) Microarray analysis in sperm from fertile and infertile men without basic sperm analysis abnormalities reveals a significantly different transcriptome. Fertil Steril 91(4 Suppl):1307–1310. doi: 10.1016/j.fertnstert.2008.01.078 PubMedCrossRefGoogle Scholar
  20. Hamatani T (2012) Human spermatozoal RNAs. Fertil Steril 97(2):275–281. doi: 10.1016/j.fertnstert.2011.12.035 PubMedCrossRefGoogle Scholar
  21. Hammoud S, Emery BR, Aoki VW et al (2007) Identification of genetic variation in the 5’ and 3’ non-coding regions of the protamine genes in patients with protamine deregulation. Arch Androl 53(5):267–274PubMedCrossRefGoogle Scholar
  22. Hammoud SS, Nix DA, Zhang H et al (2009) Distinctive chromatin in human sperm packages genes for embryo development. Nature 460(7254):473–478. doi: 10.1038/nature08162 PubMedGoogle Scholar
  23. Hammoud SS, Purwar J, Pflueger C et al (2010) Alterations in sperm DNA methylation patterns at imprinted loci in two classes of infertility. Fertil Steril 94(5):1728–1733. doi: 10.1016/j.fertnstert.2009.09.010 PubMedCrossRefGoogle Scholar
  24. Hammoud SS, Nix DA, Hammoud AO et al (2011) Genome-wide analysis identifies changes in histone retention and epigenetic modifications at developmental and imprinted gene loci in the sperm of infertile men. Hum Reprod 26(9):2558–2569. doi: 10.1093/humrep/der192 PubMedCrossRefGoogle Scholar
  25. Hud NV, Vilfan ID (2005) Toroidal DNA condensates: unraveling the fine structure and the role of nucleation in determining size. Annu Rev Biophys Biomol Struct 34:295–318. doi: 10.1146/annurev.biophys.34.040204.144500 PubMedCrossRefGoogle Scholar
  26. Jenkins TG, Carrell DT (2012) Dynamic alterations in the paternal epigenetic landscape following fertilization. Front Genet 3:143. doi: 10.3389/fgene.2012.00143 PubMedCrossRefGoogle Scholar
  27. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080. doi: 10.1126/science.1063127 PubMedCrossRefGoogle Scholar
  28. Jones EL, Zalensky AO, Zalenskaya IA (2011) Protamine withdrawal from human sperm nuclei following heterologous ICSI into hamster oocytes. Protein Pept Lett 18(8):811–816. doi:BSP/PPL/E pub/0318 [pii]PubMedCrossRefGoogle Scholar
  29. Kato Y, Kaneda M, Hata K et al (2007) Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse. Hum Mol Genet 16(19):2272–2280. doi: 10.1093/hmg/ddm179 PubMedCrossRefGoogle Scholar
  30. Kleene KC (2003) Patterns, mechanisms, and functions of translation regulation in mammalian spermatogenic cells. Cytogenet Genome Res 103(3–4):217–224. doi:76807PubMedGoogle Scholar
  31. Kobayashi H, Sato A, Otsu E et al (2007) Aberrant DNA methylation of imprinted loci in sperm from oligospermic patients. Hum Mol Genet 16(21):2542–2551. doi: 10.1093/hmg/ddm187 PubMedCrossRefGoogle Scholar
  32. Kramer JA, Krawetz SA (1996) Nuclear matrix interactions within the sperm genome. J Biol Chem 271(20):11619–11622PubMedCrossRefGoogle Scholar
  33. Marques CJ, Costa P, Vaz B et al (2008) Abnormal methylation of imprinted genes in human sperm is associated with oligozoospermia. Mol Hum Reprod 14(2):67–74. doi: 10.1093/molehr/gam093 PubMedCrossRefGoogle Scholar
  34. Miller D, Ostermeier GC (2006) Towards a better understanding of RNA carriage by ejaculate spermatozoa. Hum Reprod Update 12(6):757–767. doi: 10.1093/humupd/dml037 PubMedCrossRefGoogle Scholar
  35. Mudrak O, Chandra R, Jones E et al (2009) Reorganisation of human sperm nuclear architecture during formation of pronuclei in a model system. Reprod Fertil Dev 21(5):665–671. doi: 10.1071/RD08269 PubMedCrossRefGoogle Scholar
  36. Nanassy L, Carrell DT (2011) Abnormal methylation of the promoter of CREM is broadly associated with male factor infertility and poor sperm quality but is improved in sperm selected by density gradient centrifugation. Fertil Steril 95(7):2310–2314. doi: 10.1016/j.fertnstert.2011.03.096 PubMedCrossRefGoogle Scholar
  37. Nonchev S, Tsanev R (1990) Protamine-histone replacement and DNA replication in the male mouse pronucleus. Mol Reprod Dev 25(1):72–76. doi: 10.1002/mrd.1080250113 PubMedCrossRefGoogle Scholar
  38. Ooi SK, Bestor TH (2008) The colorful history of active DNA demethylation. Cell 133(7):1145–1148. doi: 10.1016/j.cell.2008.06.009 PubMedCrossRefGoogle Scholar
  39. Orford K, Kharchenko P, Lai W et al (2008) Differential H3K4 methylation identifies developmentally poised hematopoietic genes. Dev Cell 14(5):798–809. doi: 10.1016/j.devcel.2008.04.002 PubMedCrossRefGoogle Scholar
  40. Ostrup O, Andersen IS, Collas P (2012) Chromatin-linked determinants of zygotic genome activation. Cell Mol Life Sci. doi: 10.1007/s00018-012-1143-x PubMedGoogle Scholar
  41. Pederson T (2000) Half a century of “the nuclear matrix”. Mol Biol Cell 11(3):799–805PubMedCrossRefGoogle Scholar
  42. Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28(10):1057–1068. doi: 10.1038/nbt.1685 PubMedCrossRefGoogle Scholar
  43. Rassoulzadegan M, Grandjean V, Gounon P et al (2006) RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature 441(7092):469–474. doi: 10.1038/nature04674 PubMedCrossRefGoogle Scholar
  44. Reefhuis J, Honein MA, Schieve LA et al (2009) Assisted reproductive technology and major structural birth defects in the United States. Hum Reprod 24(2):360–366. doi: 10.1093/humrep/den387 PubMedCrossRefGoogle Scholar
  45. Rivera RM, Ross JW (2013) Epigenetics in fertilization and preimplantation embryo development. Prog Biophys Mol Biol. doi: 10.1016/j.pbiomolbio.2013.02.001 PubMedGoogle Scholar
  46. Rodman TC, Pruslin FH, Hoffmann HP et al (1981) Turnover of basic chromosomal proteins in fertilized eggs: a cytoimmunochemical study of events in vivo. J Cell Biol 90(2):351–361PubMedCrossRefGoogle Scholar
  47. Sakkas D, Urner F, Bizzaro D et al (1998) Sperm nuclear DNA damage and altered chromatin structure: effect on fertilization and embryo development. Hum Reprod 13(Suppl 4):11–19PubMedCrossRefGoogle Scholar
  48. Shaman JA, Yamauchi Y, Ward WS (2007) The sperm nuclear matrix is required for paternal DNA replication. J Cell Biochem 102(3):680–688. doi: 10.1002/jcb.21321 PubMedCrossRefGoogle Scholar
  49. Shimada A, Kikuchi K, Noguchi J et al (2000) Protamine dissociation before decondensation of sperm nuclei during in vitro fertilization of pig oocytes. J Reprod Fertil 120(2):247–256PubMedGoogle Scholar
  50. Tanphaichitr N, Sobhon P, Taluppeth N et al (1978) Basic nuclear proteins in testicular cells and ejaculated spermatozoa in man. Exp Cell Res 117(2):347–356PubMedCrossRefGoogle Scholar
  51. van der Heijden GW, Derijck AA, Ramos L et al (2006) Transmission of modified nucleosomes from the mouse male germline to the zygote and subsequent remodeling of paternal chromatin. Dev Biol 298(2):458–469. doi: 10.1016/j.ydbio.2006.06.051 PubMedCrossRefGoogle Scholar
  52. Vogelstein B, Pardoll DM, Coffey DS (1980) Supercoiled loops and eucaryotic DNA replicaton. Cell 22(1 Pt 1):79–85PubMedCrossRefGoogle Scholar
  53. Ward WS (1993) Deoxyribonucleic acid loop domain tertiary structure in mammalian spermatozoa. Biol Reprod 48(6):1193–1201PubMedCrossRefGoogle Scholar
  54. Ward WS (2010) Function of sperm chromatin structural elements in fertilization and development. Mol Hum Reprod 16(1):30–36. doi: 10.1093/molehr/gap080 PubMedCrossRefGoogle Scholar
  55. Ward WS, Partin AW, Coffey DS (1989) DNA loop domains in mammalian spermatozoa. Chromosoma 98(3):153–159PubMedCrossRefGoogle Scholar
  56. Ward WS, Kimura Y, Yanagimachi R (1999) An intact sperm nuclear matrix may be necessary for the mouse paternal genome to participate in embryonic development. Biol Reprod 60(3):702–706PubMedCrossRefGoogle Scholar
  57. Wright SJ, Longo FJ (1988) Sperm nuclear enlargement in fertilized hamster eggs is related to meiotic maturation of the maternal chromatin. J Exp Zool 247(2):155–165. doi: 10.1002/jez.1402470207 PubMedCrossRefGoogle Scholar
  58. Wu JY, Means AR (2000) Ca(2+)/calmodulin-dependent protein kinase IV is expressed in spermatids and targeted to chromatin and the nuclear matrix. J Biol Chem 275(11):7994–7999PubMedCrossRefGoogle Scholar
  59. Wykes SM, Krawetz SA (2003) The structural organization of sperm chromatin. J Biol Chem 278(32):29471–29477. doi: 10.1074/jbc.M304545200 PubMedCrossRefGoogle Scholar
  60. Yamauchi Y, Shaman JA, Boaz SM et al (2007a) Paternal pronuclear DNA degradation is functionally linked to DNA replication in mouse oocytes. Biol Reprod 77(3):407–415. doi: 10.1095/biolreprod.107.061473 PubMedCrossRefGoogle Scholar
  61. Yamauchi Y, Shaman JA, Ward WS (2007b) Topoisomerase II-mediated breaks in spermatozoa cause the specific degradation of paternal DNA in fertilized oocytes. Biol Reprod 76(4):666–672. doi: 10.1095/biolreprod.106.057067 PubMedCrossRefGoogle Scholar
  62. Zentner GE, Henikoff S (2013) Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol 20(3):259–266. doi: 10.1038/nsmb.2470 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • John R. Gannon
    • 1
  • Benjamin R. Emery
    • 1
  • Timothy G. Jenkins
    • 1
  • Douglas T. Carrell
    • 2
  1. 1.Division of Urology, Department of SurgeryUniversity of Utah School of MedicineSalt Lake CityUSA
  2. 2.Division of Urology, Department of Surgery, Department of Obstetrics and Gynecology, Department of Human GeneticsUniversity of Utah School of MedicineSalt Lake CityUSA

Personalised recommendations