Skip to main content

Genomic Changes in Spermatozoa of the Aging Male

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 791))

Abstract

Modern society is witnessing a widespread tendency to postpone parenthood due to a number of socioeconomic factors. This ever-increasing trend relates to both women and men and raises many concerns about the risks and consequences lying beneath the natural process of aging. The negative influence of the advanced maternal age has been thoroughly demonstrated, while the paternal age has attracted comparatively less attention. A problematic issue of defining whether advanced paternal age can be considered an independent risk factor, not only for a man’s fertility but also for the offspring’s health, is represented by the difficulty, linked to reproductive studies, in characterizing the impact of maternal and paternal age, separately. Researchers are now trying to overcome this obstacle by directly analyzing the male germ cell, and emerging data prove this sperm-specific approach to be a valid tool for providing novel insights on the effects of aging on the spermatozoa and, thus, on the reproductive outcome of an aging male. The purpose of this chapter is to summarize most of what is known about the relationship between male aging and changes in the spermatozoa, giving special focus on the events occurring with age at the genomic level.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aitken RJ, Krausz C (2001) Oxidative stress, DNA damage and the Y chromosome. Reproduction 122(4):497–506, Cambridge

    Article  PubMed  CAS  Google Scholar 

  • Allen JW, Collins BW, Setzer RW (1996) Spermatid micronucleus analysis of aging effects in hamsters. Mutat Res 316(5–6):261–266

    PubMed  CAS  Google Scholar 

  • Arbeev KG, Hunt SC, Kimura M et al (2011) Leukocyte telomere length, breast cancer risk in the offspring: the relations with father’s age at birth. Mech Ageing Dev 132(4):149–153

    Article  PubMed  Google Scholar 

  • Asada H, Sueoka K, Hashiba T et al (2000) The effects of age and abnormal sperm count on the nondisjunction of spermatozoa. J Assist Reprod Genet 17(1):51–59

    Article  PubMed  CAS  Google Scholar 

  • Aston KI, Hunt SC, Susser E et al (2012) Divergence of sperm and leukocyte age-dependent telomere dynamics: implications for male-driven evolution of telomere length in humans. Mol Hum Reprod 18(11):517–522

    Article  PubMed  CAS  Google Scholar 

  • Baird DM, Britt-Compton B, Rowson J et al (2006) Telomere instability in the male germline. Hum Mol Genet 15(1):45–51

    Article  PubMed  CAS  Google Scholar 

  • Baptista J, Mercer C, Prigmore E et al (2008) Breakpoint mapping and array CGH in translocations: comparison of a phenotypically normal and an abnormal cohort. Am J Hum Genet 82(4):927–936

    Article  PubMed  CAS  Google Scholar 

  • Belloc S, Benkhalifa M, Junca AM et al (2009) Paternal age and sperm DNA decay: discrepancy between chromomycin and aniline blue staining. Reprod Biomed Online 19(2):264–269

    Article  PubMed  CAS  Google Scholar 

  • Bosch M, Rajmil O, Martínez-Pasarell O et al (2001) Linear increase of diploidy in human sperm with age: a four-colour FISH study. Eur J Hum Genet 9(7):533–538

    Article  PubMed  CAS  Google Scholar 

  • Bosch M, Rajmil O, Egozcue J et al (2003) Linear increase of structural and numerical chromosome 9 abnormalities in human sperm regarding age. Eur J Hum Genet 11(10):754–759

    Article  PubMed  CAS  Google Scholar 

  • Brandriff B, Gordon LA, Crawford BB et al (1988) Sperm chromosome analysis to assess potential germ cell mosaicism. Clin Genet 34(2):85–89

    Article  PubMed  CAS  Google Scholar 

  • Crow JF (1999) Spontaneous mutation in man. Mutat Res 437(1):5–9

    Article  PubMed  CAS  Google Scholar 

  • Crow JF (2000) The origins, patterns and implications of human spontaneous mutation. Nat Rev Genet 1(1):40–47

    Article  PubMed  CAS  Google Scholar 

  • de la Rochebrochard E, Thonneau P (2002) Paternal age and maternal age are risk factors for miscarriage; results of a multicentre European study. Hum Reprod 17(6):1649–1656

    Article  PubMed  Google Scholar 

  • De La Rochebrochard E, McElreavey K, Thonneau P (2003) Paternal age over 40 years: the “amber light” in the reproductive life of men? J Androl 24(4):459–465

    Google Scholar 

  • De Meyer T, Rietzschel ER, De Buyzere ML et al (2007) Paternal age at birth is an important determinant of offspring telomere length. Hum Mol Genet 16(24):3097–3102

    Article  PubMed  Google Scholar 

  • Eisenberg DT, Hayes MG, Kuzawa CW (2012) Delayed paternal age of reproduction in humans is associated with longer telomeres across two generations of descendants. Proc Natl Acad Sci USA 109(26):10251–10256

    Article  PubMed  CAS  Google Scholar 

  • Estop AM, Márquez C, Munné S et al (1995) An analysis of human sperm chromosome breakpoints. Am J Hum Genet 56(2):452–460

    PubMed  CAS  Google Scholar 

  • Fisch H (2009) Older men are having children, but the reality of a male biological clock makes this trend worrisome. Geriatrics 64(1):14–17

    PubMed  Google Scholar 

  • Goriely A, Wilkie AO (2012) Paternal age effect mutations and selfish spermatogonial selection: causes and consequences for human disease. Am J Hum Genet 90(2):175–200

    Article  PubMed  CAS  Google Scholar 

  • Goriely A, McVean GA, van Pelt AM et al (2005) Gain-of-function amino acid substitutions drive positive selection of FGFR2 mutations in human spermatogonia. Proc Natl Acad Sci USA 102(17):6051–6056

    Article  PubMed  CAS  Google Scholar 

  • Griffin DK, Abruzzo MA, Millie EA et al (1995) Non-disjunction in human sperm: evidence for an effect of increasing paternal age. Hum Mol Genet 4(12):2227–2232

    Article  PubMed  CAS  Google Scholar 

  • Guttenbach M, Köhn FM, Engel W et al (2000) Meiotic nondisjunction of chromosomes 1, 17, 18, X, and Y in men more than 80 years of age. Biol Reprod 63(6):1727–1729

    Article  PubMed  CAS  Google Scholar 

  • Hassold TJ (1998) Nondisjunction in the human male. Curr Top Dev Biol 37:383–406

    Article  PubMed  CAS  Google Scholar 

  • Hassold THP (2001) To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet 2(4):280–291

    Article  PubMed  CAS  Google Scholar 

  • Kimura M, Cherkas LF, Kato BS et al (2008) Offspring’s leukocyte telomere length, paternal age, and telomere elongation in sperm. PLoS Genet 4(2):e37

    Article  PubMed  Google Scholar 

  • Kinakin B, Rademaker A, Martin R (1997) Paternal age effect of YY aneuploidy in human sperm, as assessed by fluorescence in situ hybridization. Cytogenet Cell Genet 78(2):116–119

    Article  PubMed  CAS  Google Scholar 

  • Kong A, Frigge ML, Masson G et al (2012) Rate of de novo mutations and the importance of father’s age to disease risk. Nature 488(7412):471–475

    Article  PubMed  CAS  Google Scholar 

  • Kurahashi H, Bolor H, Kato T et al (2009) Recent advance in our understanding of the molecular nature of chromosomal abnormalities. J Hum Genet 54(5):253–260

    Article  PubMed  CAS  Google Scholar 

  • Lowe X, Collins B, Allen J et al (1995) Aneuploidies and micronuclei in the germ cells of male mice of advanced age. Mutat Res 338(1–6):59–76

    PubMed  CAS  Google Scholar 

  • Lowe X, Eskenazi B, Nelson DO et al (2001) Frequency of XY sperm increases with age in fathers of boys with Klinefelter syndrome. Am J Hum Genet 69(5):1046–1054

    Article  PubMed  CAS  Google Scholar 

  • Martin RH, Rademaker AW (1987) The effect of age on the frequency of sperm chromosomal abnormalities in normal men. Am J Hum Genet 41(3):484–492

    PubMed  CAS  Google Scholar 

  • Martin RH, Spriggs E, Ko E et al (1995) The relationship between paternal age, sex ratios, and aneuploidy frequencies in human sperm, as assessed by multicolor FISH. Am J Hum Genet 57(6):1395–1399

    PubMed  CAS  Google Scholar 

  • Martin JA, Hamilton BE, Sutton PD et al (2007) Births: final data for 2005. Natl Vital Stat Rep 56(6):1–103

    PubMed  Google Scholar 

  • McInnes B, Rademaker A, Greene CA et al (1998) Abnormalities for chromosomes 13 and 21 detected in spermatozoa from infertile men. Hum Reprod 13(1O):2787–2790

    Article  PubMed  CAS  Google Scholar 

  • Ohye T, Inagaki H, Kogo H et al (2010) Paternal origin of the de novo constitutional t(11;22)(q23;q11). Eur J Hum Genet 18(7):783–787

    Article  PubMed  CAS  Google Scholar 

  • Olson SD, Magenis RE (1988) Preferential parental origin of de novo structural chromosomal rearrangements. In: The cytogenetics of mammalian autosomal rearrangements. Alan R. Liss, New York, pp 583–599

    Google Scholar 

  • Pacchierotti F, Andreozzi U, Russo A et al (1983) Reciprocal translocations in ageing mice and in mice with long-term low-level 239Pu contamination. Int J Radiat Biol Relat Stud Phys Chem Med 43(4):445–450

    Article  PubMed  CAS  Google Scholar 

  • Plastira K, Msaouel P, Angelopoulou R et al (2007) The effects of age on DNA fragmentation, chromatin packaging and conventional semen parameters in spermatozoa of oligoasthenoteratozoospermic patients. J Assist Reprod Genet 24(10):437–443

    Article  PubMed  Google Scholar 

  • Robbins WA, Vine MF, Truong KY et al (1997) Use of fluorescence in situ hybridization (FISH) to assess effects of smoking, caffeine, and alcohol on aneuploidy load in sperm of healthy men. Environ Mol Mutagen 30(2):175–183

    Article  PubMed  CAS  Google Scholar 

  • Rousseau F, Bonaventure J, Legeai-Mallet L et al (1996) Mutations of the fibroblast growth factor receptor-3 gene in achondroplasia. Horm Res 45(1–2):108–110

    Article  PubMed  CAS  Google Scholar 

  • Rousseaux S, Hazzouri M, Pelletier R et al (1998) Disomy rates for chromosomes 14 and 21 studied by fluorescent in-situ hybridization in spermatozoa from three men over 60 years of age. Mol Hum Reprod 4(7):695–699

    Article  PubMed  CAS  Google Scholar 

  • Rubes J, Lowe X, Moore D 2nd et al (1998) Smoking cigarettes is associated with increased sperm disomy in teenage men. Fertil Steril 70(4):715–723

    Google Scholar 

  • Rudak E, Jacobs PA, Yanagimachi R (1978) Direct analysis of the chromosome constitution of human spermatozoa. Nature 274(5674):911–913

    Article  PubMed  CAS  Google Scholar 

  • Sartorelli EM, Mazzucatto LF, de Pina-Neto JM (2001) Effect of paternal age on human sperm chromosomes. Fertil Steril 76(6):1119–1123

    Article  PubMed  CAS  Google Scholar 

  • Sartorius GA, Nieschlag E (2010) Paternal age and reproduction. Hum Reprod Update 16(1):65–79

    Article  PubMed  Google Scholar 

  • Schmid TE, Grant PG, Marchetti F et al (2012) Elemental composition of human semen is associated with motility and genomic sperm defects among older men. Hum Reprod 28:274–282, Oxford, England

    Article  PubMed  Google Scholar 

  • Seymour F, Duffy C, Korner A (1935) A case of authentic fertility in a man of 94. JAMA 105:1423–1424

    Article  Google Scholar 

  • Shi Q, Martin RH (2000) Aneuploidy in human sperm: a review of the frequency and distribution of aneuploidy, effects of donor age and lifestyle factors. Cytogenet Cell Genet 90(3–4):219–226

    Article  PubMed  CAS  Google Scholar 

  • Singh NP, Muller CH, Berger RE (2003) Effects of age on DNA double-strand breaks and apoptosis in human sperm. Fertil Steril 80(6):1420–1430

    Article  PubMed  Google Scholar 

  • Sloter E, Nath J, Eskenazi B et al (2004) Effects of male age on the frequencies of germinal and heritable chromosomal abnormalities in humans and rodents. Fertil Steril 81(4):925–943

    Article  PubMed  Google Scholar 

  • Sloter ED, Marchetti F, Eskenazi B et al (2007) Frequency of human sperm carrying structural aberrations of chromosome 1 increases with advancing age. Fertil Steril 87(5):1077–1086

    Article  PubMed  Google Scholar 

  • Tarin JJ, Brines J, Cano A (1998) Long-term effects of delayed parenthood. Hum Reprod 13(9):2371–2376

    Article  PubMed  CAS  Google Scholar 

  • Templado C, Donate A, Giraldo J et al (2011) Advanced age increases chromosome structural abnormalities in human spermatozoa. Eur J Hum Genet 19(2):145–151

    Article  PubMed  Google Scholar 

  • Thomas NS, Durkie M, Van Zyl B et al (2006) Parental and chromosomal origin of unbalanced de novo structural chromosome abnormalities in man. Hum Genet 119(4):444–450

    Article  PubMed  Google Scholar 

  • Thomas NS, Morris JK, Baptista J et al (2012) De novo apparently balanced translocations in man are predominantly paternal in origin and associated with a significant increase in paternal age. J Med Genet 47(2):112–115

    Article  Google Scholar 

  • Tiemann-Boege I, Navidi W, Grewal R et al (2002) The observed human sperm mutation frequency cannot explain the achondroplasia paternal age effect. Proc Natl Acad Sci USA 99(23):14952–14957

    Article  PubMed  CAS  Google Scholar 

  • Unryn BM, Cook LS, Riabowol KT (2005) Paternal age is positively linked to telomere length of children. Aging Cell 4(2):97–101

    Article  PubMed  CAS  Google Scholar 

  • Vagnini L, Baruffi RL, Mauri AL et al (2007) The effects of male age on sperm DNA damage in an infertile population. Reprod Biomed Online 15(5):514–519

    Article  PubMed  CAS  Google Scholar 

  • Wiener-Megnazi Z, Auslender R, Dirnfeld M (2012) Advanced paternal age and reproductive outcome. Asian J Androl 14(1):69–76

    Article  PubMed  Google Scholar 

  • Wilkie AO, Slaney SF, Oldridge M et al (1995) Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nat Genet 9(2):165–172

    Article  PubMed  CAS  Google Scholar 

  • Wyrobek AJ, Eskenazi B, Young S et al (2006) Advancing age has differential effects on DNA damage, chromatin integrity, gene mutations, and aneuploidies in sperm. Proc Natl Acad Sci USA 103(25):9601–9606

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csilla Krausz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chianese, C., Brilli, S., Krausz, C. (2014). Genomic Changes in Spermatozoa of the Aging Male. In: Baldi, E., Muratori, M. (eds) Genetic Damage in Human Spermatozoa. Advances in Experimental Medicine and Biology, vol 791. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7783-9_2

Download citation

Publish with us

Policies and ethics