Skip to main content

Gradual Speciation: Further Entangling the Tree of Life

  • Chapter
  • First Online:
Lateral Gene Transfer in Evolution

Abstract

The Tree of Life is a useful framework for providing evolutionary context to the distribution of genotypes and phenotypes among extant lineages. Organisms are placed into hierarchical groups defined by vertical inheritance, thereby allowing one to trace the origin of evolutionary novelty. The utility of the Tree of Life in understanding bacterial evolution has been criticized because pervasive lateral gene transfer confounds interpretation of current gene repertoires; organismal relationships inferred from constituent genes are muddled by the presence of numerous genes with disparate evolutionary histories. Here, I discuss gradual speciation as another stumbling block to the construction of a bacterial Tree of Life. Recombination events between bacterial strains affect only small regions of the chromosome; therefore, different chromosomal regions in sibling species have experienced their last recombination event at different times. Genetic isolation is established in a stepwise fashion over the course of tens of millions of years. During this extended time frame, descendent taxa may be the process of genetic isolation from each other before their parent population has finished the process of gaining genetic isolation from other lineages. As a result, the relationships among sibling species are necessarily ambiguous. This phylogenetic reticulation does not reflect lack of data, or the impact of transfer among extant lineages; rather, it bespeaks the fundamental lack of strict, hierarchical relationships among evolving taxa. As a result, interpretation of character states must balance parsimony with intrinsic phylogenetic ambiguity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Darwin C (1859) On the origin of species by means of natural selection or the preservation of favoured races in the struggle for life. John Murray, London

    Google Scholar 

  2. Haeckel E (1866) Generelle Morphologie der Organismen: Allgemeine Grundzüge der organischen Formen-Wissenschaft mechanisch begründet durch die von Charles Darwin reformierte Descendenz-Theorie. Georg Riemer, Berlin

    Book  Google Scholar 

  3. Mayr E (1942) Systematics and the origin of species. Columbia University Press, New York

    Google Scholar 

  4. Mayr E (1963) Animal species and evolution. Harvard University Press, Cambridge

    Google Scholar 

  5. Wiley EO (1978) The evolutionary species concept reconsidered. Syst Zool 27:17–26

    Article  Google Scholar 

  6. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    PubMed  CAS  Google Scholar 

  7. Doolittle WF (1999) Lateral genomics. Trends Cell Biol 9:M5–8.

    Article  PubMed  CAS  Google Scholar 

  8. Doolittle WF (2000) Uprooting the tree of life. Sci Amer 282:90–95

    Article  PubMed  CAS  Google Scholar 

  9. Ochman H, Lawrence JG, Groisman E (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    Article  PubMed  CAS  Google Scholar 

  10. Azad RK, Lawrence JG (2012) Detecting laterally transferred genes. Methods Mol Biol 855:281–308

    Article  PubMed  CAS  Google Scholar 

  11. Bapteste E, O’Malley MA, Beiko RG et al (2009) Prokaryotic evolution and the tree of life are two different things. Biol Direct 4:34

    Article  PubMed  Google Scholar 

  12. Kloesges T, Popa O, Martin W, Dagan T (2011) Networks of gene sharing among 329 proteobacterial genomes reveal differences in lateral gene transfer frequency at different phylogenetic depths. Mol Biol Evol 28:1057–1074

    Article  PubMed  CAS  Google Scholar 

  13. Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287

    Article  PubMed  CAS  Google Scholar 

  14. Dagan T, Martin W (2006) The tree of one percent. Genome Biol 7:118

    Article  PubMed  Google Scholar 

  15. Dykhuizen DE, Green L (1991) Recombination in Escherichia coli and the definition of biological species. J Bacteriol 173:7257–7268

    PubMed  CAS  Google Scholar 

  16. Feil EJ, Cooper JE, Grundmann H et al (2003) How clonal is Staphylococcus aureus? J Bacteriol 185:3307–3316

    Article  PubMed  CAS  Google Scholar 

  17. Feil EJ, Maiden MC, Achtman M, Spratt BG (1999) The relative contributions of recombination and mutation to the divergence of clones of Neisseria meningitidis. Mol Biol Evol 16:1496–502

    Article  PubMed  CAS  Google Scholar 

  18. Guttman DS (1997) Recombination and clonality in natural populations of Escherichia coli. Trends Ecol Evol 12:16–22

    Article  PubMed  CAS  Google Scholar 

  19. Templeton AR (1989) The meaning of species and speciation: a genetic perspective. In: Otte D, Endler JA (ed) Speciation and its consequences. Sinauer Associates, Sunderland, pp 3–27

    Google Scholar 

  20. Guttman DS, Dykhuizen DE (1994) Detecting selective sweeps in naturally occurring Escherichia coli. Genetics 138:993–1003

    PubMed  CAS  Google Scholar 

  21. Gevers D, Cohan FM, Lawrence JG et al (2005) Re-evaluating prokaryotic species. Nat Rev Microbiol 3:733–739

    Article  PubMed  CAS  Google Scholar 

  22. Cohan FM (2001) Bacterial species and speciation. Syst Biol 50:513–524

    Article  PubMed  CAS  Google Scholar 

  23. Luo C, Walk ST, Gordon DM, Feldgarden M, Tiedje JM, Konstantinidis KT (2011) Genome sequencing of environmental Escherichia coli expands understanding of the ecology and speciation of the model bacterial species. Proc Natl Acad Sci U S A 108:7200–7205.

    Article  PubMed  CAS  Google Scholar 

  24. Vulic M, Dionisio F, Taddei F, Radman M (1997) Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in Enterobacteria. Proc Natl Acad Sci U S A 94:9763–9767

    Article  PubMed  CAS  Google Scholar 

  25. Vulic M, Lenski RE, Radman M (1999) Mutation, recombination, and incipient speciation of bacteria in the laboratory. Proc Natl Acad Sci U S A 96:7348–7351

    Google Scholar 

  26. Ochman H, Wilson AC (1988) Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol 26:74–86

    Article  Google Scholar 

  27. Lawrence JG (2002) Gene transfer in bacteria: speciation without species? Theor Popul Biol 61:449–460

    Article  PubMed  Google Scholar 

  28. Day WA Jr, Fernandez RE, Maurelli AT (2001) Pathoadaptive mutations that enhance virulence: genetic organization of the cadA regions of Shigella spp. Infect Immun 69:7471–7480

    Article  PubMed  CAS  Google Scholar 

  29. Nakata N, Tobe T, Fukuda I et al (1993) The absence of a surface protease, OmpT, determines the intercellular spreading ability of Shigella: the relationship between the ompT and kcpA loci. Mol Microbiol 9:459–468

    Article  PubMed  CAS  Google Scholar 

  30. Van Valen L (1976) Ecological species, multispecies, and oaks. Taxon 25:223–239

    Google Scholar 

  31. Sharp PM, Li W-H (1987) The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias. Mol Biol Evol 4:222–230

    PubMed  CAS  Google Scholar 

  32. Retchless AC, Lawrence JG (2007) Temporal fragmentation of speciation in bacteria. Science 317:1093–1096

    Article  PubMed  CAS  Google Scholar 

  33. Sharp PM, Li W-H (1987) The codon adaptation index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15:1281–1295

    Article  PubMed  CAS  Google Scholar 

  34. Hacker J, Kaper JB (2000) Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 54:641–679

    Article  PubMed  CAS  Google Scholar 

  35. Retchless AC, Lawrence JG (2011) Quantification of codon selection for comparative bacterial genomics. BMC Genomics 12:374

    Article  PubMed  CAS  Google Scholar 

  36. Retchless AC, Lawrence JG (2012) Ecological adaptation in bacteria: speciation driven by codon selection. Mol Biol Evol 29:3669–3683

    Article  PubMed  CAS  Google Scholar 

  37. Retchless AC, Lawrence JG (2010) Phylogenetic incongruence arising from fragmented speciation in enteric bacteria. Proc Natl Acad Sci U S A 107:11453–11458

    Article  PubMed  CAS  Google Scholar 

  38. Wertz JE, Goldstone C, Gordon DM, Riley MA (2003) A molecular phylogeny of enteric bacteria and implications for a bacterial species concept. J Evol Biol 16:1236–1248

    Article  PubMed  CAS  Google Scholar 

  39. Lima-Mendez G (2012) Reticulate classification of mosaic microbial genomes using NeAT website. Methods Mol Biol 804:81–91

    Article  PubMed  CAS  Google Scholar 

  40. Bapteste E, Bouchard F, Burian RM (2012) Philosophy and evolution: minding the gap between evolutionary patterns and tree-like patterns. Methods Mol Biol 856:81–110

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey G. Lawrence .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lawrence, J. (2013). Gradual Speciation: Further Entangling the Tree of Life. In: Gophna, U. (eds) Lateral Gene Transfer in Evolution. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7780-8_13

Download citation

Publish with us

Policies and ethics