Skip to main content

Lipid Metabolism in Olive: Biosynthesis of Triacylglycerols and Aroma Components

  • Chapter
  • First Online:
Handbook of Olive Oil

Abstract

Virgin olive oil (VOO) is a natural product extracted from fresh olive fruits by physical means without any chemical transformation. Olive oil contains a mixture of triacylglycerols (TAGs) plus minor components that give the oil its properties and organoleptic characteristics. TAGs from olive oil are synthesized through a complex process that involves fixation of carbon dioxide, the production of sugars that are transported to the developing fruits, and their breakdown through glycolysis to produce intermediates that are imported into the plastids and finally converted to acetyl-CoA. In green fruits (like olive) a part of this carbon can also be fixed in the fruits themselves. The acetyl-CoA is converted to malonyl-CoA, which is used for fatty acid synthesis in cycles of elongation that take place within the plastids. The fatty acid products are converted to acyl-CoA derivatives, exported to the cytosol, and then utilized for lipid assembly in the endoplasmic reticulum. The TAG products are finally stored in oil vesicles that increase in size during fruit maturation. The aroma of VOO is caused by a variety of volatile compounds. This fraction is quantitatively small when compared with TAGs but determines the organoleptic quality of the oil. Analysis of olive volatiles reveals a high content of six-carbon aldehydes and alcohols typically synthesized by the lipoxygenase (LOX) pathway. This pathway involves the release of polyunsaturated fatty acids (linoleic and linolenic) from olive fruit cell membranes and their oxygenation by LOX activity. The resulting hydroperoxides are then cleaved by the enzyme hydroperoxide lyase to produce oxoacids and volatile aldehydes that can then be reduced to alcohols by the action of endogenous alcohol dehydrogenases. The relative activities of these enzymes during fruit maturation and olive oil processing determine the volatile composition of the oil. The more recent advances in these aspects of olive fruit metabolism are described in the review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alban C, Job D, Douce R (2000) Biotin metabolism in plants. Ann Rev Plant Physiol Plant Mol Biol 51:17–47

    CAS  Google Scholar 

  • Angerosa F (2002) Influence of volatile compounds on virgin olive oil quality evaluated by analytical approaches and sensor panels. Eur J Lipid Sci Technol 104:639–660

    CAS  Google Scholar 

  • Angiolillo A, Baldoni L, Albert AG (1997) The olive gene for stearoyl-ACP desaturase. Abstract to the third international symposium on olive growing, 1997, Chania, Olea 24, p 163

    Google Scholar 

  • Baldoni L, Georgi LL, Abbott AG (1996) Plant gene register PGR 96–052: nucleotide sequence of a cDNA clone from Olea europaea encoding a stearoyl-acyl carrier protein desaturase (accession no. U58141). Plant Physiol 111:1353–1354

    Google Scholar 

  • Banilas G, Moressis A, Nikoloudakis N, Hatzopoulos P (2005) Spatial and temporal expressions of two distinct oleate desaturases from olive (Olea europaea L.). Plant Sci 168:547–555

    CAS  Google Scholar 

  • Banilas G, Nikiforiadis A, Makariti I, Moressis A, Hatzopoulos P (2007) Discrete roles of a microsomal linoleate desaturase gene in olive identified by spatiotemporal transcriptional analysis. Tree Physiol 27:481–490

    CAS  Google Scholar 

  • Banilas G, Karampelias M, Makariti I, Kourti A, Hatzopoulos P (2011) The olive DGAT2 gene is developmentally regulated and shares overlapping but distinct expression patterns with DGAT1. J Exp Bot 62:521–532

    CAS  Google Scholar 

  • Barrett PB, Harwood JL (1998) Characterization of fatty acid elongase enzymes from germinating pea seeds. Phytochemistry 48:1295–1304

    CAS  Google Scholar 

  • Bates PD, Durret TP, Ohlrogge JB, Pollard M (2009) Analysis of the fluxes through multiple pathways of triacylglycerol synthesis in developing soybean embryos. Plant Physiol 150:55–72

    CAS  Google Scholar 

  • Blanke MM, Lenz F (1989) Fruit photosynthesis. Plant Cell Environ 12:31–46

    CAS  Google Scholar 

  • Brash AL (1999) Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem 274:23679–23682

    CAS  Google Scholar 

  • Burns DD, Galliard T, Harwood JL (1979) Purification of acyl Lydrolase enzymes from the leaves of Phaseolus multiflorus. Phytochemistry 18:1793–1797

    CAS  Google Scholar 

  • Cassagne C, Lessire R, Bessoule JJ, Moreou P, Créach A et al (1994) Biosynthesis of very long chain fatty acids in higher plants. Prog Lipid Res 33:55–69

    CAS  Google Scholar 

  • Conde C, Silva P, Agasse A, Lemoine R, Delrot S et al (2007) Utilization and transport of mannitol in Olea europaea and implications for salt stress tolerance. Plant Cell Physiol 48:42–53

    CAS  Google Scholar 

  • Damiani P, Santinelli F, Simonetti MS, Castellini M, Rosi M (1994) Comparison between two procedures for stereospecific analysis of triacylglycerols from vegetable oils. I: olive oil. J Am Oil Chem Soc 71:1157–1163

    CAS  Google Scholar 

  • Damiani P, Cossignani L, Simonetti MS, Campisi B, Favretto L et al (1997) Stereospecific analysis of the triacylglycerol fraction and linear discriminant analysis in a climatic differentiation of Umbrian extra-virgin olive oils. J Chromatogr A 758:109–116

    CAS  Google Scholar 

  • Davies DD, Patila KD, Ugochukwua EN, Towers GHN (1973) Aliphatic alcohol dehydrogenase from potato tubers. Phytochemistry 12:523–530

    CAS  Google Scholar 

  • del Cuvillo MT (1994) Biosynthesis of glycerolipids in developing olive pulp. Role of fruit photosynthesis, Ph.D. thesis, University of Seville, Seville

    Google Scholar 

  • Domergue F, Chevalier S, Créach A, Cassagne C, Lessire R (2000) Purification of the acyl-CoA elongase complex from developing rapeseed and characterization of the 3-ketoacyl-CoA synthase and the 3-hydroxyacyl-CoA dehydratase. Lipids 35:487–494

    CAS  Google Scholar 

  • Fernández-Bolaños J, Rodríguez R, Guillén R, Jiménez A (1995) Activity of cell wall-associated enzymes in ripening olive fruit. Physiologia Plantarum 93:651–658

    Google Scholar 

  • Feussner I, Wasternack C (2002) The lipoxygenase pathway. Ann Rev Plant Biol 53:275–297

    CAS  Google Scholar 

  • Feussner I, Kühn H, Wasternack C (2001) Lipoxygenase-dependent degradation of storage lipids. Trends Plant Sci 6:268–273

    CAS  Google Scholar 

  • Flora LL, Madore MA (1993) Stachyose and mannitol transport in olive (Olea europaea L.). Planta 189:484–490

    CAS  Google Scholar 

  • Gabrielli-Favretto L, Campisi B, Favretto L, Simonetti MS, Cossignani L et al (1999) Cross-validation in linear discriminant analysis of triacylglycerol structural data from Istrian olive oils. J AOAC Int 82:1489–1494

    Google Scholar 

  • Galliard T, Matthew JA, Fishwick MJ, Wright AJ (1976) The enzymic degradation of lipids resulting from physical disruption of cucumber (Cucumis sativus) fruit. Phytochemistry 15:1647–1650

    CAS  Google Scholar 

  • Gallina-Toschi T, Christie WW, Conte LS (1993) Capillary gas chromatography combined with high performance liquid chromatography for the structural analysis of olive oil triacylglycerols. J High Res Chromatogr 16:725–730

    Google Scholar 

  • Giannoulia K, Haralampidis K, Poghosyan Z, Murphy DJ, Hatzopoulos P (2000) Differential expression of diacylglycerol acyltransferase (DGAT) genes in olive tissues. Biochem Soc Trans 28:695–697

    CAS  Google Scholar 

  • Giannoulia K, Banilas G, Hatzopoulos P (2007) Oleosin gene expression in olive. J Plant Physiol 164:104–107

    CAS  Google Scholar 

  • Grechkin A (1998) Recent developments in biochemistry of the plant lipoxygenase pathway. Prog Lipid Res 1998:317–352

    Google Scholar 

  • Haralampidis K, Milioni D, Sánchez J, Baltrusch M, Heinz E et al (1998) Temporal and transient expression of stearoyl-ACP carrier protein desaturase gene during olive fruit development. J Exp Bot 49:1661–1669

    CAS  Google Scholar 

  • Harwood JL (1988) Fatty acid metabolism. Ann Rev Plant Physiol Plant Mol Biol 39:101–138

    CAS  Google Scholar 

  • Harwood JL (1996) Recent advances in the biosynthesis of plant fatty acids. Biochem Biophys Acta 1301:7–56

    Google Scholar 

  • Harwood JL (2005) Fatty acid biosynthesis. In: Murphy DJ (ed) Plant lipids: biology, utilisation and manipulation. Blackwell, Oxford, pp 27–66

    Google Scholar 

  • Harwood JL, Page RA (1994) Biochemistry of oil synthesis. In: Murphy DJ (ed) Designer oil crops. VCH, Weinheim, pp 165–194

    Google Scholar 

  • Hatanaka A, Harada T (1973) Formation of cis-3-hexenal, trans-2-hexenal and cis-3-hexenol in macerated Thea sinensis leaves. Phytochemistry 12:2341–2346

    CAS  Google Scholar 

  • Hatanaka A, Kajiwara T, Sekiya J (1976) Seasonal variations in trans-2-hexenal and linolenic acid in homogenates of Thea sinensis leaves. Phytochemistry 15:889–1891

    Google Scholar 

  • Hatanaka A, Kajiwara T, Matsui K, Matsunaga T (1989) Non-enzymatic isomerization of 12-hydroxy-3(Z)-dodecenal to the 2(E)-isomer after enzymatic cleavage of 13-hydroperoxylinoleil alcohol in tea chloroplasts. Zeitschrift für Naturforschung 44:161–164

    CAS  Google Scholar 

  • Hatzopoulos P, Banilas G, Giannoulia K, Gazis F, Nikoloudakis N et al (2002) Breeding, molecular markers and molecular biology of the olive tree. Eur J Lipid Sci Technol 104:574–586

    CAS  Google Scholar 

  • Hernández ML, Mancha M, Martínez-Rivas JM (2005) Molecular cloning and characterization of genes encoding two microsomal oleate desaturases (FAD2) from olive. Phytochemistry 66:1417–1426

    Google Scholar 

  • Hernández ML, Guschina IA, Martínez-Rivas JM, Mancha M, Harwood JL (2008) The utilization and desaturation of oleate and linoleate during glycerolipid biosynthesis in olive (Olea europaea L.) callus cultures. J Exp Bot 59:2425–2435

    Google Scholar 

  • Hernández ML, Padilla MN, Mancha M, Martínez-Rivas JM (2009) Expression analysis identifies FAD2-2 as the olive oleate desaturase gene mainly responsible for the linoleic acid content in virgin olive oil. J Agric Food Chem 57:6199–6206

    Google Scholar 

  • Hyun Y, Choi S, Hwang HJ, Yu J, Nam SJ et al (2008) Cooperation and functional diversification of two closely related galactolipase genes for jasmonate biosynthesis. Dev Cell 14:183–192

    CAS  Google Scholar 

  • Jones A, Davies HM, Voelker TA (1995) Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases. Plant Cell 7:359–371

    CAS  Google Scholar 

  • Kandler O, Hopf H (1982) Oligosaccarides based on sucrose (sucrosyl oligosaccharides). In: Loewus FA, Tanner W (eds) Encyclopedia of plant physiology, new series, vol 13. Springer, Berlin, pp 348–383

    Google Scholar 

  • Kim I-S, Grosch W (1981) Partial purification and properties of a hydroperoxide lyase from fruits of pear. J Agric Food Chem 29:1220–1225

    CAS  Google Scholar 

  • Knowles JR (1989) The mechanism of biotin-dependent enzymes. Annu Rev Biochem 58:195–221

    CAS  Google Scholar 

  • Lessire R, Domergue F, Spinner C, Lucet-Levannier K, Lellouche JP et al (1998) Dehydration of 3-hydroxy icosanoyl-CoA and reduction of (E)-2,3-icosenoyl-CoA are required for elongation by leek microsomal elongase(s). Plant Physiol Biochem 36:205–211

    CAS  Google Scholar 

  • Lorenzi V, Maury J, Casanova J, Berti L (2006) Purification, product characterization and kinetic properties of lipoxygenase from olive fruit (Olea europaea L.). Plant Physiol Biochem 44:450–454

    CAS  Google Scholar 

  • Luaces P, Sanz C, Pérez AG (2007) Thermal stability of lipoxygenase and hydroperoxide lyase from olive fruit and repercussion on olive oil aroma biosynthesis. J Agric Food Chem 55:6309–6313

    CAS  Google Scholar 

  • Matsui K (1998) Properties and structures of fatty acid hydroperoxide lyase. Belg J Bot 131:50–62

    Google Scholar 

  • Matsui K, Toyota H, Kajiwara T, Kakuno T, Hatanaka A (1991) Fatty acid hydroperoxide cleaving enzyme, hydroperoxide lyase, from tea leaves. Phytochemistry 30:2109–2113

    CAS  Google Scholar 

  • Matsui K, Shibutani M, Hase T, Kajiwara T (1996) Bell pepper fruit fatty acid hydroperoxide lyase is a cytochrome P450 (CYP74B). FEBS Lett 394:21–24

    CAS  Google Scholar 

  • Matsui K, Ujitaa C, Fujimotoa S, Wilkinson J, Hiatt B et al (2000) Fatty acid 9- and 13-hydroperoxide lyases from cucumber. FEBS Lett 481:183–188

    CAS  Google Scholar 

  • Morales MT, Aparicio R, Rios JJ (1994) Dynamic headspace gas chromatographic method for determining volatiles in virgin olive oil. J Chromatog A 668:455–462

    CAS  Google Scholar 

  • Morales MT, Alonso MV, Rios JJ, Aparicio R (1995) Virgin olive oil aroma: relationship between volatile compounds and sensory attributes by chemometrics. J Agric Food Chem 43:2925–2931

    CAS  Google Scholar 

  • Murphy DJ (2001) The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 40:325–438

    CAS  Google Scholar 

  • Nikolau BJ, Oliver DJ, Schnable PS, Wurtele ES (2000) Molecular biology of acetyl-CoA metabolism. In: Harwood JL, Quinn PJ (eds) Recent advances in the biochemistry of plant lipids. Portland Press, London, pp 591–593

    Google Scholar 

  • Noordermeer MA, Veldink GA, Vliegenthart JFG (1999) Alfalfa contains substantial 9-hydroperoxide lyase activity and a 3Z:2E-enal isomerase. FEBS Lett 443:201–204

    CAS  Google Scholar 

  • Noordermeer MA, Veldink GA, Vliegenthart JFG (2001) Fatty acid hydroperoxide lyase: a plant cytochrome P450 enzyme involved in wound healing and pest resistance. Chem BioChem 2:494–504

    CAS  Google Scholar 

  • Olías JM, Pérez AG, Rios JJ, Sanz LC (1993) Aroma of virgin olive oil: biogenesis of the “green” odor notes. J Agric Food Chem 41:2368–2373

    Google Scholar 

  • Oliveira J, Tavares RM, Gerós H (2002) Utilization and transport of glucose in Olea europaea cell suspensions. Plant Cell Physiol 43:1510–1517

    CAS  Google Scholar 

  • Padilla MN (2009) Caracterización bioquímica y molecular de la lipoxigenasa e hidroperóxido liasa de olivo y su relación con la biosíntesis del aroma del aceite de oliva virgen. Ph.D. thesis, Universidad de Sevilla, Sevilla

    Google Scholar 

  • Padilla MN, Hernández ML, Sanz C, Martínez-Rivas JM (2009) Functional characterization of two 13-lipoxygenase genes from olive fruit in relation to the biosynthesis of volatile compounds of virgin olive oil. J Agric Food Chem 57:9097–9107

    CAS  Google Scholar 

  • Padilla MN, Hernández ML, Sanz C, Martínez-Rivas JM (2010) Isolation, expression, and characterization of a 13-hydroperoxide lyase gene from olive fruit related to the biosynthesis of the main virgin olive oil aroma compounds. J Agric Food Chem 58:5649–5657

    CAS  Google Scholar 

  • Pérez AG, Sanz LC, Olías JM (1993) Partial purification and some properties of alcohol acyltransferase from strawberry fruits. J Agric Food Chem 41:462–1466

    Google Scholar 

  • Pérez-Gilabert M, Veldink GA, Vliegenthart JFG (1998) Oxidation of dilinoleoyl phosphatidylcholine by lipoxygenase 1 from soybeans. Arch Biochem Biophys 354:18–23

    Google Scholar 

  • Poghosyan ZP, Giannoulia K, Katinakis P, Murphy DJ, Hatzopoulos P (2005) Temporal and transient expression of olive enoyl-ACP reductase gene during flower and fruit development. Plant Physiol Biochem 43:37–44

    CAS  Google Scholar 

  • Phillips DR, Matthew JA, Reynolds J, Fenwick GR (1979) Partial purification and properties of a cis-3: trans-2-enal isomerase from cucumber fruit. Phytochemistry 18:401–404

    CAS  Google Scholar 

  • Porta H, Rocha-Sosa M (2002) Plant lipoxygenases. Physiological and molecular features. Plant Physiol 130:15–21

    CAS  Google Scholar 

  • Proietti P, Famiani F, Tombesi A (1999) Gas exchange in olive fruit. Photosynthetica 36:423–432

    Google Scholar 

  • Ramli US, Baker DS, Quant PA, Harwood JL (2002a) Control mechanisms operating for lipid biosynthesis differ in oil-palm (Elaeis guineensis Jacq.) and olive (Olea europaea L.) callus cultures. Biochem J 364:385–391

    CAS  Google Scholar 

  • Ramli US, Baker DS, Quant PA, Harwood JL (2002b) Control analysis of lipid biosynthesis in tissue cultures from oil crops shows that flux control is shared between fatty acid synthesis and lipid assembly. Biochem J 364:93–401

    Google Scholar 

  • Ramli US, Salas JJ, Quant PA, Harwood JL (2005) Metabolic control analysis reveals an important role for diacylglycerol acyltransferase in olive but not in oil palm lipid accumulation. FEBS J 272:5764–5770

    CAS  Google Scholar 

  • Ramli US, Salas JJ, Quant PA, Harwood JL (2009) Use of metabolic control analysis to give quantitative information on control of lipid biosynthesis in the important oil crop, Elaeis guineensis (oil palm). New Phytol 184:330–339

    CAS  Google Scholar 

  • Rangel B, Platt KA, Thomson WW (1997) Ultrastructural aspects of the cytoplasmic origin and accumulation of oil in olive fruit (Olea europaea). Physiol Plant 101:109–114

    CAS  Google Scholar 

  • Ridolfi M, Terenziani S, Patumi M, Fontanazza G (2002) Characterization of the lipoxygenases in some olive cultivars and determination of their role in volatile compounds formation. J Agric Food Chem 50:835–839

    CAS  Google Scholar 

  • Ross B, Sánchez J, Millán F, Murphy DJ (1993) Differential presence of oleosins in oleogenic seed and mesocarp tissues in olive (Olea europaea) and avocado (Persea americana). Plant Sci 93:203–210

    CAS  Google Scholar 

  • Rutter AJ, Sánchez J, Harwood JL (1997) Glycerolipid synthesis by microsomal fractions from Olea europaea fruits and tissue cultures. Phytochemistry 46:265–272

    CAS  Google Scholar 

  • Sacchi R, Addeo F, Giudicianni I, Paolillo L (1992) Analysis of the positional distribution of fatty acids in olive oil triacylglycerols by high resolution 13C-NMR of the carbonyl region. Ital J Food Sci 2:117–123

    Google Scholar 

  • Sachs MM, Freeling M, Okimoto R (1980) The anaerobic proteins of maize. Cell 20:761–767

    CAS  Google Scholar 

  • Salas JJ (2004) Characterization of alcohol acyltransferase from olive fruit. J Agric Food Chem 52:3155–3158

    CAS  Google Scholar 

  • Salas JJ, Sánchez J (1998) Alcohol dehydrogenases from olive (Olea europaea) fruit. Phytochemistry 48:35–40

    CAS  Google Scholar 

  • Salas JJ, Sánchez J (1999a) Hydroperoxide lyase from olive (Olea europaea) fruits. Plant Physiol 143:19–26

    CAS  Google Scholar 

  • Salas JJ, Sánchez J (1999b) The decrease of virgin olive oil flavor produced by high malaxation temperature is due to inactivation of hydroperoxide lyase. J Agric Food Chem 47:809–812

    CAS  Google Scholar 

  • Salas JJ, Willams M, Harwood JL, Sánchez J (1999) Lipoxygenase activity in olive (Olea europaea ) fruit. J Am Oil Chem Soc 76:1163–1168

    CAS  Google Scholar 

  • Salas JJ, Sánchez J, Ramli US, Manaf AM, Williams M et al (2000) Biochemistry of lipid metabolism in olive and other oil fruits. Prog Lipid Res 39:151–180

    CAS  Google Scholar 

  • Salas JJ, Sánchez C, García-González DL, Aparicio R (2005) Impact of the suppression of lipoxygenase and hydroperoxide lyase on the quality of the green odor in green leaves. J Agric Food Chem 53:1648–1655

    CAS  Google Scholar 

  • Salas JJ, García-González DL, Aparicio R (2006) Volatile compound biosynthesis by green leaves from an Arabidopsis Thaliana hydroperoxide lyase knockout mutant. J Agric Food Chem 54:8199–8205

    CAS  Google Scholar 

  • Salch YP, Grove MJ, Takamura H, Gardner HW (1995) Characterization of a C-5,13-cleaving enzyme of 13(S)-hydroperoxide of linolenic acid by soybean seed. Plant Physiol 108:1211–1218

    CAS  Google Scholar 

  • Sánchez J (1994) Lipid photosynthesis in olive fruit. Prog Lipid Res 33:97–104

    Google Scholar 

  • Sánchez J (1995) Olive oil biogenesis. Contribution of fruit photosynthesis. In: Kader JC, Mazliak P (eds) Plant lipid metabolism. Kluwer Academic, Dordrecht, pp 564–566

    Google Scholar 

  • Sánchez J, Harwood JL (1992) Fatty acid synthesis in soluble fractions from olive (Olea europaea) fruits. J Plant Physiol 140:129–134

    Google Scholar 

  • Sánchez J, Harwood JL (2002) Biosynthesis of triacylglycerols and volatiles in olives. Eur J Lipid Sci Technol 104:564–573

    Google Scholar 

  • Sánchez J, Salas JJ (1997) Photosynthetic carbon metabolism of olives. In: Williams JP, Khan MU, Lem NW (eds) Physiology, biochemistry and molecular biology of plant lipids. Kluwer Academic, Dordrecht, pp 325–327

    Google Scholar 

  • Sánchez J, de la Osa C, Harwood JL (1990) Effect of light and temperature on the biosynthesis of storage triacylglycerols in olive (Olea europaea) fruits. In: Harwood JL, Quinn PJ (eds) Plant lipid biochemistry, structure and utilization. Portland Press, London, pp 390–392

    Google Scholar 

  • Sánchez J, del Cuvillo MT, Harwood JL (1992) Glycerolipid biosynthesis by microsomal fractions from olive fruits. Phytochemistry 31:129–134

    Google Scholar 

  • Sánchez-Ortiz A, Pérez AG, Sanz C (2007) Cultivar differences on nonesterified polyunsaturated fatty acid as a limiting factor for the biogenesis of virgin olive oil aroma. J Agric Food Chem 55:7869–7873

    Google Scholar 

  • Santinelli F, Damiani P, Christie WW (1992) The triacylglycerol structure of olive oil determined by silver ion high-performance liquid chromatography in combination with stereospecific analysis. J Am Oil Chem Soc 69:552–556

    CAS  Google Scholar 

  • Sasaki Y, Nagano Y (2004) Plant acetyl-CoA carboxylase: structure, biosynthesis, regulation, and gene manipulation for plant breeding. Biosci Biotechnol Biochem 68:1175–1184

    CAS  Google Scholar 

  • Scarpati ML, Lo Scalzo R, Vita G (1993) Olea europaea volatiles attractive and repellent to the olive fruit fly (Dacus oleae, Gmelin). J Chem Ecology 19:881–891

    CAS  Google Scholar 

  • Shanklin J, Cahoon EB (1998) Desaturation and related modification of fatty acids. Ann Rev Plant Physiol Plant Mol Biol 49:611–641

    CAS  Google Scholar 

  • Siedow JN (1991) Plant lipoxygenase: structure and function. Ann Rev Plant Physiol Plant Mol Biol 42:145–188

    CAS  Google Scholar 

  • Sperling P, Heinz E (2001) Desaturases fused to their electron donor. Eur J Lipid Sci Technol 103:158–180

    CAS  Google Scholar 

  • Stefanoudaki E, Koutsaftakis A, Harwood JL (2011) Influence of malaxation conditions on characteristic qualities of olive oil. Food Chem 127:1481–1486

    CAS  Google Scholar 

  • Stoop JMH, Williamson JD, Pharr DM (1996) Mannitol metabolism in plants: a method for coping with stress. Trends Plant Sci 1:139–144

    Google Scholar 

  • Stumpf PK (1987) The biosynthesis of saturated fatty acids. In: Stumpf PK, Conn EE (eds) The biochemistry of plants, vol 9. Academic Press, New York, pp 121–136

    Google Scholar 

  • Vichi S, Pizzale L, Conte LS (2007) Stereospecific distribution of fatty acids in triacylglycerols of olive oils. Eur J Lipid Sci Technol 109:72–78

    CAS  Google Scholar 

  • Vick BA, Zimmerman DC (1976) Lipoxygenase and hydroperoxide lyase in germinating watermelon seedlings. Plant Physiol 57:780–788

    CAS  Google Scholar 

  • Vioque E, De la Maza MP (1973) Glicerolípidos de la aceituna. Grasas Aceites 24:226–235

    CAS  Google Scholar 

  • Weselake RJ, Taylor DC, Rahman MH, Shah S, Laroche A et al (2009) Increasing the flow of carbon into seed oil. Biotechnol Adv 27:866–878

    CAS  Google Scholar 

  • Williams M, Sánchez J, Hann C, Harwood JL (1993) Lipid biosynthesis in olive cultivars. J Exp Bot 44:1717–1723

    CAS  Google Scholar 

  • Yamashita I, Nemoto Y, Yoshikawa S (1976) Formation of volatile alcohols and esters from aldehydes in strawberries. Phytochemistry 15:1633–1637

    CAS  Google Scholar 

  • Zhang M, Fan J, Taylor DC, Ohlrogge JB (2009) DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development. Plant Cell 21:3885–3901

    CAS  Google Scholar 

  • Zimmermann MH, Ziegler H (1975) List of sugars and sugar alcohols in sieve-tube exudates. In: Zimmermann MH, Milburn JA (eds) Encyclopedia of plant physiology, new series, vol 1. Springer, Berlin, pp 480–505

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquín J. Salas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Salas, J.J., Harwood, J.L., Martínez-Force, E. (2013). Lipid Metabolism in Olive: Biosynthesis of Triacylglycerols and Aroma Components. In: Aparicio, R., Harwood, J. (eds) Handbook of Olive Oil. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-7777-8_4

Download citation

Publish with us

Policies and ethics