Skip to main content

Cholesterol and Its Role in Synaptic Transmission

  • Chapter
  • First Online:
Cholesterol and Presynaptic Glutamate Transport in the Brain

Part of the book series: SpringerBriefs in Neuroscience ((BRIEFSNEUROSCI,volume 12))

  • 430 Accesses

Abstract

Certain level of membrane cholesterol, which is an abundant constituent of eukaryotic membranes, is very important for normal functioning of a number of membrane proteins involved in synaptic transmission, such as ion channels, pumps, receptors, and transporters, while the alterations in cholesterol content change the property of membranes and the activity of these proteins. Moreover, cholesterol deficiency has been implicated in the pathogenesis of several neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen JA, Halverson-Tamboli RA, Rasenick MM (2007) Lipid rafts microdomains and neurotransmitter signaling. Nat Rev Neurosci 8:128–140

    Article  PubMed  CAS  Google Scholar 

  • Barnes K, Ingram JC, Bennett MDM et al (2004) Methyl-beta-cyclodextrin stimulates glucose uptake in Clone 9 cells: a possible role for lipid rafts. Biochem J 378:343–351

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Beurrier C, Bonvento G, Kerkerian-Le Goff L, Gubellini P (2009) Role of glutamate transporters in corticostriatal synaptic transmission. Neuroscience 158:1608–1615

    Article  PubMed  CAS  Google Scholar 

  • Bonini M, Rossi S, Karlsson G, Almgren M, Lo Nostro P, Baglioni P (2006) Self-assembly of beta-cyclodextrin in water. Part 1: Cryo-TEM and dynamic and static light scattering. Langmuir 22:1478–1484

    Article  PubMed  CAS  Google Scholar 

  • Brasnjo G, Otis T (2001) Neuronal glutamate transporters control activation of postsynaptic metabotropic glutamate receptor and influence cerebellar long-term depression. Neuron 31:607–616

    Article  PubMed  CAS  Google Scholar 

  • Burger K, Gimpl G, Fahrenholz F (2000) Regulation of receptor function by cholesterol. Cell Mol Life Sci 57:1577–1592

    Article  PubMed  CAS  Google Scholar 

  • Butchbach M, Tian G, Guo H, Lin CG (2004) Association of excitatory amino acid transporters, especially EAAT2, with cholesterol-rich lipid raft microdomains. J Biol Chem 279:34388–34396

    Article  PubMed  CAS  Google Scholar 

  • Cavelier P, Attwell D (2005) Tonic release of glutamate by a DIDS-sensitive mechanism in rat hippocampal slices. J Physiol 564:397–410

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cevc G, Richardsen H (1999) Lipid vesicles and membrane fusion. Adv Drug Deliv Rev 38:207–232

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhyay A, Paila YD (2007) Lipid-protein interactions, regulation and dysfunction of brain cholesterol. Biochem Biophys Res Commun 354:627–633

    Article  PubMed  CAS  Google Scholar 

  • Cho WJ, Jeremic A, Jin H et al (2007) Neuronal fusion pore assembly requires membrane cholesterol. Cell Biol Int 31:1301–1308

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chou YC, Lin SB, Tsai LH, Tsai HI, Lin CM (2003) Cholesterol deficiency increases the vulnerability of hippocampal glia in primary culture to glutamate-induced excitotoxicity. Neurochem Int 43:197–209

    Article  PubMed  CAS  Google Scholar 

  • Churchward MA, Rogasevskaia T, Hofgen J et al (2005) Cholesterol facilitates the native mechanism of Ca2+-triggerted membrane fusion. J Cell Sci 118:4833–4848

    Article  PubMed  CAS  Google Scholar 

  • Crockett EL (1998) Cholesterol function in plasma membranes from ectotherms: membrane-specific roles in adaptation to temperature. Am Zool 38:291–304

    CAS  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  PubMed  CAS  Google Scholar 

  • Dalskov SM, Immerdal L, Niels-Christiansen LL, Hansen GH, Schousboe A, Danielsen EM (2005) Lipid raft localization of GABA A receptor and Na+, K+-ATPase in discrete microdomain clusters in rat cerebellar granule cells. Neurochem Int 46:489–499

    Article  PubMed  CAS  Google Scholar 

  • Deutsch JW, Kelly RB (1981) Lipids of synaptic vesicles: relevance to the mechanism of membrane fusion. Biochemistry 20:378–385

    Article  PubMed  CAS  Google Scholar 

  • Dietschy JM, Turley SD (2001) Cholesterol metabolism in the brain. Curr Opin Lipidol 12:105–112

    Article  PubMed  CAS  Google Scholar 

  • Eroglu C, Bruger B, Wieland F et al (2003) Glutamate-binding affinity of Drosophila metabotropic glutamate receptor is modulated by association with lipid rafts. Proc Natl Acad Sci USA 100:10219–10224

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fong TM, McNamee MG (1986) Correlation between acetylcholine receptor function and structural properties of membranes. Biochemistry 25:830–840

    Article  PubMed  CAS  Google Scholar 

  • González MI, Susarla BT, Fournier KM (2007) Constitutive endocytosis and recycling of the neuronal glutamate transporter, excitatory amino acid carrier 1. J Neurochem 103:1917–1931

    Article  PubMed  Google Scholar 

  • Hering H, Lin CC, Sheng M (2003) Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability. J Neurosci 23:3262–3271

    PubMed  CAS  Google Scholar 

  • Hill W, An B, Johnson J (2002) Endogenously expressed epithelial sodium channel is present in lipid rafts in A6 cells. J Biol Chem 277:33541–33544

    Article  PubMed  CAS  Google Scholar 

  • Jadot M, Andrianaivo F, Dubois F, Wattiaux R (2001) Effects of methylcyclodextrin on lysosomes. Eur J Biochem 268:1392–1399

    Article  PubMed  CAS  Google Scholar 

  • Jennings LJ, Xu QW, Firth TA (1999) Cholesterol inhibits spontaneous action potentials and calcium currents in guinea pig gallbladder smooth muscle. Am J Physiol 277:1017–1026

    Google Scholar 

  • Kato N, Nakanishi M, Hirashima N (2003) Cholesterol depletion inhibits store-operated calcium currents and exocytotic membrane fusion in RBL-2H3 cells. Biochemistry 42:11808–11814

    Article  PubMed  CAS  Google Scholar 

  • Kroes J, Ostwald R (1971) Erythrocyte membranes—effect of increased cholesterol content on permeability. Biochim Biophys Acta 249:647–650

    Article  PubMed  CAS  Google Scholar 

  • Lang T, Bruns D, Wenzel D et al (2001) SNAREs are concentrated in cholesterol-dependent clusters that define docking and fusion sites for exocytosis. EMBO J 20:2202–2213

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lange Y, Ye J, Steck TL (2004) How cholesterol homeostasis is regulated by plasma membrane cholesterol in excess of phospholipids. Proc Natl Acad Sci USA 101(32):11664–11667

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lange Y, Ye J, Steck TL (2005) Activation of membrane cholesterol by displacement from phospholipids. J Biol Chem 280:36126–36131

    Article  PubMed  CAS  Google Scholar 

  • Launikonis BS, Stephenson DG (2001) Effects of membrane cholesterol manipulation on excitation-contraction coupling in skeletal muscle of the toad. J Physiol 534:71–85

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Levitan I, Christian AE, Tulenko TN, Rothblat GH (2000) Membrane cholesterol content modulates activation of volume-regulated anion current in bovine endothelial cells. J Gen Physiol 115:405–416

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Martens J, O`Connell K, Tamkun M (2004) Targeting of ion channels to membrane microdomains: localization of Kv channels to lipid rafts. Trends Pharmacol Sci 25:16–21

    Article  PubMed  CAS  Google Scholar 

  • Mauch DH, Nägler K, Schumacher S et al (2001) CNS synaptogenesis promoted by glia-derived cholesterol. Science 294:1354–1357

    Article  PubMed  CAS  Google Scholar 

  • Messner M, Kurkov SV, Jansook P, Loftsson T (2010) Self-assembled cyclodextrin aggregates and nanoparticles. Int J Pharm 387:199–208

    Article  PubMed  CAS  Google Scholar 

  • Mitter D, Reisinger C, Hinz B (2003) The synaptophysin/synaptobrevin interaction critically depends on the cholesterol content. J Neurochem 84:35–42

    Article  PubMed  CAS  Google Scholar 

  • Miyajima K, Sawada M, Nakagaki M (1983) Viscosity B-coefficients, apparent molar volumes, and activity-coefficients for alpha-cyclodextrin and gamma-cyclodextrin in aqueous-solutions. Bull Chem Soc Jpn 56:3556–3560

    Article  CAS  Google Scholar 

  • Miyajima K, Mukai T, Nakagaki M, Otagiri M, Uekama K (1986) Activity-coefficients of dimethyl-beta-cyclodextrin in aqueous-solutions. Bull Chem Soc Jpn 59:643–644

    Article  CAS  Google Scholar 

  • Pfrieger FW (2003) Cholesterol homeostasis and function in neurons of the central nervous system. Cell Mol Life Sci 60:1158–1171

    PubMed  CAS  Google Scholar 

  • Rodal SK, Skretting G, Garred O, Vilhardt F, van Deurs B, Sandvig K (1999) Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol Biol Cell 10:961–974

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rohrbough J, Broadie K (2005) Lipid regulation of the synaptic vesicle cycle. Nat Rev Neurosci 6:139–150

    Article  PubMed  CAS  Google Scholar 

  • Romanenko VG, Rothblat GH, Levitan I (2002) Modulation of endothelial inward-rectifier K+ current by optical isomers of cholesterol. Biophys J 83:3211–3222

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Salaun C, James DJ, Chamberlain LH (2004) Lipid rafts and the regulation of exocytosis. Traffic 5:1–10

    Article  Google Scholar 

  • Salaun C, Gould GW, Chamberlain LH (2005) The SNARE proteins SNAP-25 and SNAP-23 display different affinities for lipid rafts in PC12 cells. Regulation by distinct cysteine-rich domains. J Biol Chem 280(2):1236–1240

    Article  Google Scholar 

  • Singh M, Sherma R, Banerjee U (2002) Biotechnological application of cyclodextrins. Biotechnol Adv 20:341–359

    Article  PubMed  CAS  Google Scholar 

  • Sooksawate T, Simmonds MA (2001) Effects of membrane cholesterol on the sensitivity of the GABA(A) receptor to GABA in acutely dissociated rat hippocampal neurones. Neuropharmacology 40:178–184

    Article  PubMed  CAS  Google Scholar 

  • Steck TL, Ye J, Lange Y (2002) Probing red cell membrane cholesterol movement with cyclopdextrin. Biophys J 83:2118–2125

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Subtil A, Gaidarov I, Kobylarz K et al (1999) Acute cholesterol depletion inhibits clathrin-coated pit budding. Proc Natl Acad Sci USA 96:6775–6780

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Taverna E, Saba E, Rowe J et al (2004) Role of lipid microdomains in P/Q-type calcium channel (Cav2.1) clustering and function in presynaptic membranes. J Biol Chem 279:5127–5134

    Article  PubMed  CAS  Google Scholar 

  • Thiele C, Hannah MJ, Fahrenholz F, Huttner WB (2000) Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nat Cell Biol 2:42–49

    Article  PubMed  CAS  Google Scholar 

  • Tsai HI, Tsai LH, Chen MY et al (2006) Cholesterol deficiency perturbs actin signaling and glutamate homeostasis in hippocampal astrocytes. Brain Res 1104:27–38

    Article  PubMed  CAS  Google Scholar 

  • Wasser CR, Ertunc M, Liu X et al (2007) Cholesterol-dependent balance between evoked and spontaneous vesicle recycling. J Physiol 579(2):413–429

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xia F, Gao X, Kwan E et al (2004) Disruption of pancreatic β-cells lipid rafts modifies Kv2.1 channel gating and insulin exocyrtosis. J Biol Chem 279:24685–24691

    Article  PubMed  CAS  Google Scholar 

  • Xia F, Leung YM, Gaisano G et al (2007) Targeting of Kv4, Cav1.2 and SNARE proteins to cholesterol-rich lipid rafts in pancreatic a-cells: effects on glucagons stimulus-secretion coupling. Endocrinology 148:2157–2167

    Article  PubMed  CAS  Google Scholar 

  • Yancey PG, Rodrigueza WV, Kilsdonk EP et al (1996) Cellular cholesterol efflux mediated by cyclodextrins. J Biol Chem 271:16026–16034

    Article  PubMed  CAS  Google Scholar 

  • Zamir O, Charlton MP (2006) Cholesterol and synaptic transmitter release at crayfish neuromuscular junctions. J Physiol 571:83–99

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zidovetzki R, Levitan I (2007) Use of cyclodextrins to manipulatre plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim Biophys Acta 1768:1311–1324

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Borisova, T. (2013). Cholesterol and Its Role in Synaptic Transmission. In: Cholesterol and Presynaptic Glutamate Transport in the Brain. SpringerBriefs in Neuroscience, vol 12. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7759-4_2

Download citation

Publish with us

Policies and ethics