Skip to main content

A Generalized Model for Optimum Futures Hedge Ratio

  • Reference work entry
  • First Online:
Handbook of Financial Econometrics and Statistics
  • 9098 Accesses

Abstract

Under martingale and joint-normality assumptions, various optimal hedge ratios are identical to the minimum variance hedge ratio. As empirical studies usually reject the joint-normality assumption, we propose the generalized hyperbolic distribution as the joint log-return distribution of the spot and futures. Using the parameters in this distribution, we derive several most widely used optimal hedge ratios: minimum variance, maximum Sharpe measure, and minimum generalized semivariance. Under mild assumptions on the parameters, we find that these hedge ratios are identical. Regarding the equivalence of these optimal hedge ratios, our analysis suggests that the martingale property plays a much important role than the joint distribution assumption.

To estimate these optimal hedge ratios, we first write down the log-likelihood functions for symmetric hyperbolic distributions. Then we estimate these parameters by maximizing the log-likelihood functions. Using these MLE parameters for the generalized hyperbolic distributions, we obtain the minimum variance hedge ratio and the optimal Sharpe hedge ratio. Also based on the MLE parameters and the numerical method, we can calculate the minimum generalized semivariance hedge ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams, J., & Montesi, C. J. (1995). Major issues related to hedge accounting. Newark: Financial Accounting Standard Board.

    Google Scholar 

  • Atkinson, A. C. (1982). The simulation of generalized inverse Gaussian and hyperbolic random variables. SIAM Journal of Scientific and Statistical Computing, 3, 502–515.

    Article  Google Scholar 

  • Barndorff-Nielsen, O. E. (1977). Exponentially decreasing distributions for the logarithm of particle size. Proceedings of the Royal Society London A, 353, 401–419.

    Article  Google Scholar 

  • Barndorff-Nielsen, O. E. (1978). Hyperbolic distributions and distributions on hyperbolae. Scandinavian Journal of Statistics, 5, 151–157.

    Google Scholar 

  • Barndorff-Nielsen, O. E. (1995). Normal inverse Gaussian distributions and the modeling of stock returns. Research Report no. 300, Department of Theoretical Statistics, Aarhus University.

    Google Scholar 

  • Bawa, V. S. (1975). Optimal rules for ordering uncertain prospects. Journal of Financial Economics, 2, 95–121.

    Article  Google Scholar 

  • Bawa, V. S. (1978). Safety-first, stochastic dominance, and optimal portfolio choice. Journal of Financial and Quantitative Analysis, 13, 255–271.

    Article  Google Scholar 

  • Bibby, B. M., & Sørensen, M. (2003). Hyperbolic processes in finance. In S. T. Rachev (Ed.), Handbook of heavy tailed distributions in finance (pp. 211–248). Amsterdam/The Netherlands: Elsevier Science.

    Google Scholar 

  • Bingham, N. H., & Kiesel, R. (2001). Modelling asset returns with hyperbolic distribution. In J. Knight & S. Satchell (Eds.), Return distribution in Finance (pp. 1–20). Oxford/Great Britain: Butterworth-Heinemann.

    Google Scholar 

  • Blæsid, P. (1981). The two-dimensional hyperbolic distribution and related distribution with an application to Johannsen’s bean data. Biometrika, 68, 251–263.

    Article  Google Scholar 

  • Chen, S. S., Lee, C. F., & Shrestha, K. (2001). On a mean-generalized semivariance approach to determining the hedge ratio. Journal of Futures Markets, 21, 581–598.

    Article  Google Scholar 

  • Chen, S. S., Lee, C. F., & Shrestha, K. (2003). Futures hedge ratio: A review. The Quarterly Review of Economics and Finance, 43, 433–465.

    Article  Google Scholar 

  • De Jong, A., De Roon, F., & Veld, C. (1997). Out-of-sample hedging effectiveness of currency futures for alternative models and hedging strategies. Journal of Futures Markets, 17, 817–837.

    Article  Google Scholar 

  • Eberlein, E., & Keller, U. (1995). Hyperbolic distributions in finance. Bernoulli, 1, 281–299.

    Article  Google Scholar 

  • Eberlein, E., Keller, U., & Prause, K. (1998). New insights into smile, mispricing and value at risk: The hyperbolic model. Journal of Business, 71, 371–406.

    Article  Google Scholar 

  • Fishburn, P. C. (1977). Mean-risk analysis with risk associated with below-target returns. American Economic Review, 67, 116–126.

    Google Scholar 

  • Harlow, W. V. (1991). Asset allocation in a downside-risk framework. Financial Analysts Journal, 47, 28–40.

    Article  Google Scholar 

  • Howard, C. T., & D’Antonio, L. J. (1984). A risk-return measure of hedging effectiveness. Journal of Financial and Quantitative Analysis, 19, 101–112.

    Article  Google Scholar 

  • Johnson, L. L. (1960). The theory of hedging and speculation in commodity futures. Review of Economic Studies, 27, 139–151.

    Article  Google Scholar 

  • Kücher, U., Neumann, K., Sørensen, M., & Streller, A. (1999). Stock returns and hyperbolic distributions. Mathematical and Computer Modelling, 29, 1–15.

    Article  Google Scholar 

  • Lien, D., & Tse, Y. K. (1998). Hedging time-varying downside risk. Journal of Futures Markets, 18, 705–722.

    Article  Google Scholar 

  • Lien, D., & Tse, Y. K. (2000). Hedging downside risk with futures contracts. Applied Financial Economics, 10, 163–170.

    Article  Google Scholar 

  • Lien, D., & Tse, Y. K. (2001). Hedging downside risk: Futures vs. options. International Review of Economics and Finance, 10, 159–169.

    Article  Google Scholar 

  • Price, K., Price, B., & Nantel, T. J. (1982). Variance and lower partial moment measures of systematic risk: Some analytical and empirical results. Journal of Finance, 37, 843–855.

    Article  Google Scholar 

  • Rydberg, T. H. (1997). The normal inverse Gaussian Levy process: Simulation and approximation. Communications in Statistics: Stochastic models, 13, 887–910.

    Google Scholar 

  • Rydberg, T. H. (1999). Generalized hyperbolic diffusion processes with applications in finance. Mathematical Finance, 9, 183–201.

    Article  Google Scholar 

  • Scott, W. (1979). On optimal and data-based histograms. Biometrika, 33, 605–610.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Few Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Lee, CF., Lee, JY., Wang, K., Sheu, YC. (2015). A Generalized Model for Optimum Futures Hedge Ratio. In: Lee, CF., Lee, J. (eds) Handbook of Financial Econometrics and Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7750-1_94

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7750-1_94

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7749-5

  • Online ISBN: 978-1-4614-7750-1

  • eBook Packages: Business and Economics

Publish with us

Policies and ethics