Skip to main content

HIV-1 Maturation

  • Chapter
  • First Online:
Book cover Advances in HIV-1 Assembly and Release

Abstract

To replicate, viruses must form stable particles that are released from infected cells, yet must disassemble and release their genomes following entry into target cells. Retroviruses, including the human immunodeficiency viruses HIV-1 and HIV-2, resolve this conundrum through assembly of particles from polyproteins followed by maturation of the core via proteolytic cleavage of the polyproteins. Cleavage of the Gag and Gag–Pol polyproteins results in morphogenesis of the core containing a metastable capsid that is competent for disassembly upon penetration of a cell. For HIV-1, inhibition of the viral protease results in immature particles that are impaired at entry as well as post-entry stages of infection. Hence, drugs targeting the viral protease represent a major arm of current therapy for HIV infection. In this chapter, we review the current state of knowledge regarding HIV-1 maturation, including structural and mechanistic aspects as well as the consequences of its inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weiss ER, Gottlinger H (2011) The role of cellular factors in promoting HIV budding. J Mol Biol 410(4):525–533

    Article  PubMed  CAS  Google Scholar 

  2. Pettit SC, Everitt LE, Choudhury S, Dunn BM, Kaplan AH (2004) Initial cleavage of the human immunodeficiency virus type 1 GagPol precursor by its activated protease occurs by an intramolecular mechanism. J Virol 78(16):8477–8485

    Article  PubMed  CAS  Google Scholar 

  3. Lee SK, Potempa M, Kolli M, Ozen A, Schiffer CA, Swanstrom R (2012) Context surrounding processing sites is crucial in determining cleavage rate of a subset of processing sites in HIV-1 Gag and Gag-Pro-Pol polyprotein precursors by viral protease. J Biol Chem 287(16):13279–13290

    Article  PubMed  CAS  Google Scholar 

  4. Tritch RJ, Cheng Y-SE, Yin FH, Erickson-Viitanen S (1991) Mutagenesis of protease cleavage sites in the human immunodeficiency virus type 1 gag polyprotein. J Virol 65(2):922–930

    PubMed  CAS  Google Scholar 

  5. Krausslich HG, Ingraham RH, Skoog MT, Wimmer E, Pallai PV, Carter CA (1989) Activity of purified biosynthetic proteinase of human immunodeficiency virus on natural substrates and synthetic peptides. Proc Natl Acad Sci USA 86(3):807–811

    Article  PubMed  CAS  Google Scholar 

  6. Pettit SC, Moody MD, Wehbie RS, Kaplan AH, Nantermet PV, Klein CA et al (1994) The p2 domain of human immunodeficiency virus type 1 Gag regulates sequential proteolytic processing and is required to produce fully infectious virions. J Virol 68(12):8017–8027

    PubMed  CAS  Google Scholar 

  7. Lee SK, Harris J, Swanstrom R (2009) A strongly transdominant mutation in the human immunodeficiency virus type 1 gag gene defines an Achilles heel in the virus life cycle. J Virol 83(17):8536–8543

    Article  PubMed  CAS  Google Scholar 

  8. Forshey BM, von Schwedler U, Sundquist WI, Aiken C (2002) Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication. J Virol 76(11):5667–5677

    Article  PubMed  CAS  Google Scholar 

  9. von Schwedler UK, Stray KM, Garrus JE, Sundquist WI (2003) Functional surfaces of the human immunodeficiency virus type 1 capsid protein. J Virol 77(9):5439–5450

    Article  Google Scholar 

  10. Byeon IJ, Meng X, Jung J, Zhao G, Yang R, Ahn J et al (2009) Structural convergence between Cryo-EM and NMR reveals intersubunit interactions critical for HIV-1 capsid function. Cell 139(4):780–790

    Article  PubMed  CAS  Google Scholar 

  11. Tang S, Murakami T, Agresta BE, Campbell S, Freed EO, Levin JG (2001) Human immunodeficiency virus type 1 N-terminal capsid mutants that exhibit aberrant core morphology and are blocked in initiation of reverse transcription in infected cells. J Virol 75(19):9357–9366

    Article  PubMed  CAS  Google Scholar 

  12. Jiang J, Ablan SD, Derebail S, Hercik K, Soheilian F, Thomas JA et al (2011) The interdomain linker region of HIV-1 capsid protein is a critical determinant of proper core assembly and stability. Virology 421(2):253–265

    Article  PubMed  CAS  Google Scholar 

  13. Tang S, Ablan S, Dueck M, Ayala-Lopez W, Soto B, Caplan M et al (2007) A second-site suppressor significantly improves the defective phenotype imposed by mutation of an aromatic residue in the N-terminal domain of the HIV-1 capsid protein. Virology 359(1):105–115

    Article  PubMed  CAS  Google Scholar 

  14. Yang R, Aiken C (2007) A mutation in alpha helix 3 of CA renders human immunodeficiency virus type 1 cyclosporin A resistant and dependent: rescue by a second-site substitution in a distal region of CA. J Virol 81(8):3749–3756

    Article  PubMed  CAS  Google Scholar 

  15. Yang R, Shi J, Byeon I-JL, Ahn J, Sheehan JH, Meiler J et al (2012) Identification of second-site suppressors of human immunodeficiency virus type 1 CA mutants: restoration of intracellular activities without correction of intrinsic capsid stability defects. Retrovirology 9:30

    Article  PubMed  Google Scholar 

  16. Huber HE, McCoy JM, Seehra JS, Richardson CC (1989) Human immunodeficiency virus 1 reverse transcriptase. Template binding, processivity, strand displacement synthesis, and template switching. J Biol Chem 264(8):4669–4678

    PubMed  CAS  Google Scholar 

  17. Bebenek K, Abbotts J, Roberts JD, Wilson SH, Kunkel TA (1989) Specificity and mechanism of error-prone replication by human immunodeficiency virus-1 reverse transcriptase. J Biol Chem 264(28):16948–16956

    PubMed  CAS  Google Scholar 

  18. Blair WS, Pickford C, Irving SL, Brown DG, Anderson M, Bazin R et al (2010) HIV capsid is a tractable target for small molecule therapeutic intervention. PLoS Pathog 6(12):e1001220

    Article  PubMed  Google Scholar 

  19. Kortagere S, Madani N, Mankowski MK, Schon A, Zentner I, Swaminathan G et al (2012) Inhibiting early-stage events in HIV-1 replication by small-molecule targeting of the HIV-1 capsid. J Virol 86(16):8472–8481

    Article  PubMed  CAS  Google Scholar 

  20. Shi J, Zhou J, Shah VB, Aiken C, Whitby K (2011) Small-molecule inhibition of human immunodeficiency virus type 1 infection by virus capsid destabilization. J Virol 85(1):542–549

    Article  PubMed  CAS  Google Scholar 

  21. Briggs JA, Grunewald K, Glass B, Forster F, Krausslich HG, Fuller SD (2006) The mechanism of HIV-1 core assembly: insights from three-dimensional reconstructions of authentic virions. Structure 14(1):15–20

    Article  PubMed  CAS  Google Scholar 

  22. Hoglund S, Ofverstedt LG, Nilsson A, Lundquist P, Gelderblom H, Ozel M et al (1992) Spatial visualization of the maturing HIV-1 core and its linkage to the envelope. AIDS Res Hum Retroviruses 8(1):1–7

    Article  PubMed  CAS  Google Scholar 

  23. Wright ER, Schooler JB, Ding HJ, Kieffer C, Fillmore C, Sundquist WI et al (2007) Electron cryotomography of immature HIV-1 virions reveals the structure of the CA and SP1 Gag shells. EMBO J 26(8):2218–2226

    Article  PubMed  CAS  Google Scholar 

  24. Briggs JA, Riches JD, Glass B, Bartonova V, Zanetti G, Krausslich HG (2009) Structure and assembly of immature HIV. Proc Natl Acad Sci USA 106(27):11090–11095

    Article  PubMed  CAS  Google Scholar 

  25. Yeager M (2011) Design of in vitro symmetric complexes and analysis by hybrid methods reveal mechanisms of HIV capsid assembly. J Mol Biol 410(4):534–552

    Article  PubMed  CAS  Google Scholar 

  26. Pornillos O, Ganser-Pornillos BK, Kelly BN, Hua Y, Whitby FG, Stout CD et al (2009) X-ray structures of the hexameric building block of the HIV capsid. Cell 137(7):1282–1292

    Article  PubMed  Google Scholar 

  27. Pornillos O, Ganser-Pornillos BK, Yeager M (2011) Atomic-level modelling of the HIV capsid. Nature 469(7330):424–427

    Article  PubMed  CAS  Google Scholar 

  28. Li S, Hill CP, Sundquist WI, Finch JT (2000) Image reconstructions of helical assemblies of the HIV-1 CA protein. Nature 407:409–413

    Article  PubMed  CAS  Google Scholar 

  29. Meng X, Zhao G, Yufenyuy E, Ke D, Ning J, Delucia M et al (2012) Protease cleavage leads to formation of mature trimer interface in HIV-1 capsid. PLoS Pathog 8(8):e1002886

    Article  PubMed  CAS  Google Scholar 

  30. de Marco A, Muller B, Glass B, Riches JD, Krausslich HG, Briggs JA (2010) Structural analysis of HIV-1 maturation using cryo-electron tomography. PLoS Pathog 6(11):e1001215

    Article  PubMed  Google Scholar 

  31. Keller PW, Adamson CS, Heymann JB, Freed EO, Steven AC (2011) HIV-1 maturation inhibitor bevirimat stabilizes the immature Gag lattice. J Virol 85(4):1420–1428

    Article  PubMed  CAS  Google Scholar 

  32. Zhou J, Yuan X, Dismuke D, Forshey BM, Lundquist C, Lee KH et al (2004) Small-molecule inhibition of human immunodeficiency virus type 1 replication by specific targeting of the final step of virion maturation. J Virol 78(2):922–929

    Article  PubMed  CAS  Google Scholar 

  33. Wiegers K, Rutter G, Kottler H, Tessmer U, Hohenberg H, Krausslich H-G (1998) Sequential steps in human immunodeficiency virus particle maturation revealed by alterations of individual Gag polyprotein cleavage sites. J Virol 72(4):2846–2854

    PubMed  CAS  Google Scholar 

  34. von Schwedler UK, Stemmler TL, Sundquist WI (1998) Proteolytic refolding of the HIV-1 capsid protein amino-terminus facilitates viral core assembly. EMBO J 17:1555

    Article  Google Scholar 

  35. Gross I, Hohenberg H, Huckhagel C, Krausslich H-G (1998) N-terminal extension of human immunodeficiency virus capsid protein converts the in vitro assembly phenotype from tubular to spherical particles. J Virol 72:4798–4810

    PubMed  CAS  Google Scholar 

  36. Wildova M, Hadravova R, Stokrova J, Krizova I, Ruml T, Hunter E et al (2008) The effect of point mutations within the N-terminal domain of Mason-Pfizer monkey virus capsid protein on virus core assembly and infectivity. Virology 380(1):157–163

    Article  PubMed  CAS  Google Scholar 

  37. Cortines JR, Monroe EB, Kang S, Prevelige PE Jr (2011) A retroviral chimeric capsid protein reveals the role of the N-terminal beta-hairpin in mature core assembly. J Mol Biol 410(4):641–652

    Article  PubMed  CAS  Google Scholar 

  38. Tang C, Ndassa Y, Summers MF (2002) Structure of the N-terminal 283-residue fragment of the immature HIV-1 Gag polyprotein. Nat Struct Biol 9(7):537–543

    PubMed  CAS  Google Scholar 

  39. Ganser-Pornillos BK, von Schwedler UK, Stray KM, Aiken C, Sundquist WI (2004) Assembly properties of the human immunodeficiency virus type 1 CA protein. J Virol 78(5):2545–2552

    Article  PubMed  CAS  Google Scholar 

  40. Mortuza GB, Haire LF, Stevens A, Smerdon SJ, Stoye JP, Taylor IA (2004) High-resolution structure of a retroviral capsid hexameric amino-terminal domain. Nature 431(7007):481–485

    Article  PubMed  CAS  Google Scholar 

  41. Mayo K, Huseby D, McDermott J, Arvidson B, Finlay L, Barklis E (2003) Retrovirus capsid protein assembly arrangements. J Mol Biol 325(1):225–237

    Article  PubMed  CAS  Google Scholar 

  42. Bharat TA, Davey NE, Ulbrich P, Riches JD, de Marco A, Rumlova M et al (2012) Structure of the immature retroviral capsid at 8 Ǻ resolution by cryo-electron microscopy. Nature 487(7407):385–389

    Article  PubMed  CAS  Google Scholar 

  43. Accola MA, Hoglund S, Gottlinger HG (1998) A putative a-helical structure which overlaps the capsid-p2 boundary in the human immunodeficiency virus type 1 Gag precursor is crucial for viral particle assembly. J Virol 72(3):2072–2078

    PubMed  CAS  Google Scholar 

  44. Liang C, Hu J, Russell RS, Roldan A, Kleiman L, Wainberg MA (2002) Characterization of a putative alpha-helix across the capsid-SP1 boundary that is critical for the multimerization of human immunodeficiency virus type 1 gag. J Virol 76(22):11729–11737

    Article  PubMed  CAS  Google Scholar 

  45. Morellet N, Druillennec S, Lenoir C, Bouaziz S, Roques BP (2005) Helical structure determined by NMR of the HIV-1 (345-392)Gag sequence, surrounding p2: implications for particle assembly and RNA packaging. Protein Sci 14(2):375–386

    Article  PubMed  CAS  Google Scholar 

  46. Datta SA, Temeselew LG, Crist RM, Soheilian F, Kamata A, Mirro J et al (2011) On the role of the SP1 domain in HIV-1 particle assembly: a molecular switch? J Virol 85(9):4111–4121

    Article  PubMed  CAS  Google Scholar 

  47. Pettit SC, Henderson GJ, Schiffer CA, Swanstrom R (2002) Replacement of the P1 amino acid of human immunodeficiency virus type 1 Gag processing sites can inhibit or enhance the rate of cleavage by the viral protease. J Virol 76(20):10226–10233

    Article  PubMed  CAS  Google Scholar 

  48. Canady MA, Tihova M, Hanzlik TN, Johnson JE, Yeager M (2000) Large conformational changes in the maturation of a simple RNA virus, nudaurelia capensis omega virus (NomegaV). J Mol Biol 299(3):573–584

    Article  PubMed  CAS  Google Scholar 

  49. Yu IM, Zhang W, Holdaway HA, Li L, Kostyuchenko VA, Chipman PR et al (2008) Structure of the immature dengue virus at low pH primes proteolytic maturation. Science 319(5871):1834–1837

    Article  PubMed  CAS  Google Scholar 

  50. Conway JF, Wikoff WR, Cheng N, Duda RL, Hendrix RW, Johnson JE et al (2001) Virus maturation involving large subunit rotations and local refolding. Science 292(5517):744–748

    Article  PubMed  CAS  Google Scholar 

  51. Briggs JA, Simon MN, Gross I, Krausslich HG, Fuller SD, Vogt VM et al (2004) The stoichiometry of Gag protein in HIV-1. Nat Struct Mol Biol 11(7):672–675

    Article  PubMed  CAS  Google Scholar 

  52. Lanman J, Lam TT, Emmett MR, Marshall AG, Sakalian M, Prevelige PE Jr (2004) Key interactions in HIV-1 maturation identified by hydrogen-deuterium exchange. Nat Struct Mol Biol 11(7):676–677

    Article  PubMed  CAS  Google Scholar 

  53. Ma YM, Vogt VM (2002) Rous sarcoma virus Gag protein-oligonucleotide interaction suggests a critical role for protein dimer formation in assembly. J Virol 76(11):5452–5462

    Article  PubMed  CAS  Google Scholar 

  54. Fu W, Gorelick RJ, Rein A (1994) Characterization of human immunodeficiency virus type 1 dimeric RNA from wild-type and protease-defective virions. J Virol 68(8):5013–5018

    PubMed  CAS  Google Scholar 

  55. Shehu-Xhilaga M, Kraeusslich HG, Pettit S, Swanstrom R, Lee JY, Marshall JA et al (2001) Proteolytic processing of the p2/nucleocapsid cleavage site is critical for human immunodeficiency virus type 1 RNA dimer maturation. J Virol 75(19):9156–9164

    Article  PubMed  CAS  Google Scholar 

  56. Rein A (2010) Nucleic acid chaperone activity of retroviral Gag proteins. RNA Biol 7(6):700–705

    Article  PubMed  CAS  Google Scholar 

  57. Cen S, Khorchid A, Gabor J, Rong L, Wainberg MA, Kleiman L (2000) Roles of Pr55(gag) and NCp7 in tRNA(3)(Lys) genomic placement and the initiation step of reverse transcription in human immunodeficiency virus type 1. J Virol 74(22):10796–10800

    Article  PubMed  CAS  Google Scholar 

  58. Hunter E, Swanstrom R (1990) Retrovirus envelope glycoproteins. Curr Top Microbiol Immunol 157:187–253

    Article  PubMed  CAS  Google Scholar 

  59. Cosson P (1996) Direct interaction between the envelope and matrix proteins of HIV-1. EMBO J 15(21):5783–5788

    PubMed  CAS  Google Scholar 

  60. Murakami T, Freed EO (2000) Genetic evidence for an interaction between human immunodeficiency virus type 1 matrix and alpha-helix 2 of the gp41 cytoplasmic tail. J Virol 74(8):3548–3554

    Article  PubMed  CAS  Google Scholar 

  61. Freed EO, Martin MA (1996) Domains of the human immunodeficiency virus type 1 matrix and gp41 cytoplasmic tail required for envelope incorporation. J Virol 70:341–351

    PubMed  CAS  Google Scholar 

  62. Murakami T, Freed EO (2000) The long cytoplasmic tail of gp41 is required in a cell type-dependent manner for HIV-1 envelope glycoprotein incorporation into virions. Proc Natl Acad Sci USA 97(1):343–348

    Article  PubMed  CAS  Google Scholar 

  63. Wyma DJ, Kotov A, Aiken C (2000) Evidence for a stable interaction of gp41 with Pr55(Gag) in immature human immunodeficiency virus type 1 particles. J Virol 74(20):9381–9387

    Article  PubMed  CAS  Google Scholar 

  64. Murakami T, Ablan S, Freed EO, Tanaka Y (2004) Regulation of human immunodeficiency virus type 1 Env-mediated membrane fusion by viral protease activity. J Virol 78(2):1026–1031

    Article  PubMed  CAS  Google Scholar 

  65. Wyma DJ, Jiang J, Shi J, Zhou J, Lineberger JE, Miller MD et al (2004) Coupling of human immunodeficiency virus type 1 fusion to virion maturation: a novel role of the gp41 cytoplasmic tail. J Virol 78(7):3429–3435

    Article  PubMed  CAS  Google Scholar 

  66. Kol N, Shi Y, Tsvitov M, Barlam D, Shneck RZ, Kay MS et al (2007) A stiffness switch in human immunodeficiency virus. Biophys J 92(5):1777–1783

    Article  PubMed  CAS  Google Scholar 

  67. Joyner AS, Willis JR, Crowe JE Jr, Aiken C (2011) Maturation-induced cloaking of neutralization epitopes on HIV-1 particles. PLoS Pathog 7(9):e1002234

    Article  PubMed  CAS  Google Scholar 

  68. Chojnacki J, Staudt T, Glass B, Bingen P, Engelhardt J, Anders M et al (2012) Maturation-dependent HIV-1 surface protein redistribution revealed by fluorescence nanoscopy. Science 338(6106):524–528

    Article  PubMed  CAS  Google Scholar 

  69. Li F, Goila-Gaur R, Salzwedel K, Kilgore NR, Reddick M, Matallana C et al (2003) PA-457: a potent HIV inhibitor that disrupts core condensation by targeting a late step in Gag processing. Proc Natl Acad Sci USA 100(23):13555–13560

    Article  PubMed  CAS  Google Scholar 

  70. Adamson CS, Sakalian M, Salzwedel K, Freed EO (2010) Polymorphisms in Gag spacer peptide 1 confer varying levels of resistance to the HIV- 1 maturation inhibitor bevirimat. Retrovirology 7:36

    Article  PubMed  Google Scholar 

  71. Adamson CS, Ablan SD, Boeras I, Goila-Gaur R, Soheilian F, Nagashima K et al (2006) In vitro resistance to the human immunodeficiency virus type 1 maturation inhibitor PA-457 (Bevirimat). J Virol 80(22):10957–10971

    Article  PubMed  CAS  Google Scholar 

  72. Nguyen AT, Feasley CL, Jackson KW, Nitz TJ, Salzwedel K, Air GM et al (2011) The prototype HIV-1 maturation inhibitor, bevirimat, binds to the CA-SP1 cleavage site in immature Gag particles. Retrovirology 8:101

    Article  PubMed  CAS  Google Scholar 

  73. Blair WS, Cao J, Fok-Seang J, Griffin P, Isaacson J, Jackson RL et al (2009) New small-molecule inhibitor class targeting human immunodeficiency virus type 1 virion maturation. Antimicrob Agents Chemother 53(12):5080–5087

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Aiken Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aiken, C., Zhang, P. (2013). HIV-1 Maturation. In: Freed, E. (eds) Advances in HIV-1 Assembly and Release. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7729-7_6

Download citation

Publish with us

Policies and ethics