Skip to main content

Tissue Engineering of the Urethra: The Basics, Current Concept, and the Future

  • Chapter
  • First Online:
Advanced Male Urethral and Genital Reconstructive Surgery

Part of the book series: Current Clinical Urology ((CCU))

Abstract

Urethral reconstruction can be necessitated by congenital anomalies, infection, trauma, and cancer. In situations where the desired surgical outcome requires tissue substitution, choices have traditionally consisted of autografts of flaps and/or grafts, allografts of homologous or heterologous tissue, or synthetic materials. Unfortunately, however, these options have the potential for complications such as donor site morbidity, rejection, or suboptimal performance. Thus, there is a rationale to support development of “off-the-shelf” tissue substitutes that will allow simplified and durable restoration of urethral form and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Santucci R, Eisenberg L. Urethrotomy has a much lower success rate than previously reported. J Urol. 2010;183:1859–62.

    Article  PubMed  Google Scholar 

  2. Terlecki RP, Steele MC, Valadez C, et al. Grafts are unnecessary for proximal bulbar reconstruction. J Urol. 2010;184:2395–9.

    Article  PubMed  Google Scholar 

  3. Pansadoro V, Emiliozzi P. Which urethroplasty for which results? Curr Opin Urol. 2002;12:223–7.

    Article  PubMed  Google Scholar 

  4. Andrich DE, Mundy AR. Substitution urethroplasty with buccal mucosal-free grafts. J Urol. 2001;165:1131–4.

    Article  CAS  PubMed  Google Scholar 

  5. Freed LE, Vunjak-Novakovic G, Biron RJ, et al. Biodegradable polymer scaffolds for tissue engineering. Biotechnology (N Y). 1994;12:689–93.

    Article  CAS  Google Scholar 

  6. Atala A. Tissue engineering in the genitourinary system. In: Atala A, Mooney D, editors. Tissue engineering. Boston: Birkhauser Press; 1997. p. 149–64.

    Google Scholar 

  7. Atala A, Schlussel RN, Retik AB. Renal cell growth in vivo after attachment to biodegradable polymer scaffolds. J Urol. 1995;153:4.

    Article  Google Scholar 

  8. Atala A, Freeman MR, Vacanti JP, et al. Implantation in vivo and retrieval of artificial structures consisting of rabbit and human urothelium and human bladder muscle. J Urol. 1993;150:608–12.

    CAS  PubMed  Google Scholar 

  9. Atala A, Kim W, Paige KT, et al. Endoscopic treatment of vesicoureteral reflux with chondrocyte-alginate suspension. J Urol. 1994;152:641.

    CAS  PubMed  Google Scholar 

  10. El-Kassaby AW, Retik AB, Yoo JJ, et al. Urethral stricture repair with an off-the-shelf collagen matrix. J Urol. 2003;169:170–3.

    Article  CAS  PubMed  Google Scholar 

  11. Atala A, Vacanti JP, Peters CA, et al. Formation of urothelial structures in vivo from dissociated cells attached to biodegradable polymer scaffolds in vitro. J Urol. 1992;148:658.

    CAS  PubMed  Google Scholar 

  12. Cilento BG, Freeman MR, Schneck FX, et al. Phenotypic and cytogenetic characterization of human bladder urothelia expanded in vitro. J Urol. 1994;52:655.

    Google Scholar 

  13. Solomon LZ, Jennings AM, Sharpe P, et al. Effects of short-chain fatty acids on primary urothelial cells in culture: implications for intravesical use in enterocystoplasties. J Lab Clin Med. 1998;132(4):279–83.

    Article  CAS  PubMed  Google Scholar 

  14. Fauza DO, Fishman S, Mehegan K, et al. Videofetoscopically assisted fetal tissue engineering: skin replacement. J Pediatr Surg. 1998;33:357–61.

    Article  CAS  PubMed  Google Scholar 

  15. Fauza DO, Fishman S, Mehegan K, et al. Videofetoscopically assisted fetal tissue engineering: bladder augmentation. J Pediatr Surg. 1998;33:7–12.

    Article  CAS  PubMed  Google Scholar 

  16. Amiel GE, Atala A. Current and future modalities for functional renal replacement. Urol Clin North Am. 1999;26:235–46.

    Article  CAS  PubMed  Google Scholar 

  17. Tobin MS, Freeman MR, Atala A. Maturational response of normal human urothelial cells in culture is dependent on extracellular matrix and serum additives. Surg Forum. 1994;45:786.

    Google Scholar 

  18. Oberpenning FO, Meng J, Yoo J, et al. De novo reconstitution of a functional urinary bladder by tissue engineering. Nat Biotechnol. 1999;17:2.

    Article  Google Scholar 

  19. Nguyen HT, Park JM, Peters CA, et al. Cell-specific activation of the HB-EGF and ErbB1 genes by stretch in primary human bladder cells. In Vitro Cell Devel Biol Anim. 1999;35:371–5.

    Article  CAS  Google Scholar 

  20. Atala A, Guzman L, Retik A. A novel inert collagen matrix for hypospadias repair. J Urol. 1999;162:1148–51.

    Article  CAS  PubMed  Google Scholar 

  21. Probst M, Dahiya R, Carrier S, et al. Reproduction of functional smooth muscle tissue and partial bladder replacement. Br J Urol. 1997;79:505–15.

    Article  CAS  PubMed  Google Scholar 

  22. Kropp BP, Ludlow JK, Spicer D, et al. Rabbit urethral regeneration using small intestinal submucosa onlay grafts. Urology. 1998;52:138–42.

    Article  CAS  PubMed  Google Scholar 

  23. Piechota HJ, Dahms SE, Nunes LS, et al. In vitro functional properties of the rat bladder regenerated by the bladder acellular matrix graft. J Urol. 1998;159:1717–24.

    Article  CAS  PubMed  Google Scholar 

  24. Liebert M, Wedemeyer G, Abruzzo LV, et al. Stimulated urothelial cells produce cytokines and express an activated cell surface antigenic phenotype. Semin Urol. 1991;9:124–30.

    CAS  PubMed  Google Scholar 

  25. Scriven S, Booth C, Thomas DF, et al. Reconstitution of human urothelium from monolayer cultures. J Urol. 1997;158:1147–52.

    Article  CAS  PubMed  Google Scholar 

  26. Mikos AG, Thorsen AJ, Czerwonka LA, et al. Preparation and characterization of poly(L-lactic acid) foams. Polymer. 1994;5:1068–77.

    Article  Google Scholar 

  27. Harris LD, Kim BS, Mooney DJ. Open pore biodegradable matrices formed with gas foaming. J Biomed Mater Res. 1998;42:396–402.

    Article  CAS  PubMed  Google Scholar 

  28. Puthenveettil JA, Burger MS, Reznikoff CA. Replicative senescence in human uroepithelial cells. Adv Exp Med Biol. 1999;462:83–91.

    Article  CAS  PubMed  Google Scholar 

  29. Liebert M, Hubbel A, Chung M, et al. Expression of mal is associated with urothelial differentiation in vitro: identification by differential display reverse-transcriptase polymerase chain reaction. Differentiation. 1997;61:177–85.

    Article  CAS  PubMed  Google Scholar 

  30. Ponder KP, Gupta S, Leland F, et al. Mouse hepatocytes migrate to liver parenchyma and function indefinitely after intrasplenic transplantation. Proc Natl Acad Sci USA. 1991;88:1217–21.

    Article  CAS  PubMed  Google Scholar 

  31. Pariente JL, Kim BS, Atala A. In vitro bio-compatibility assessment of naturally derived and synthetic biomaterials using normal human urothelial cells. J Biomed Mater Res. 2001;55:33–9.

    Article  CAS  PubMed  Google Scholar 

  32. Brittberg M, Lindahl A, Nilsson A, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331:889–95.

    Article  CAS  PubMed  Google Scholar 

  33. Alberts B, Bray D, Lewis J, et al. Molecular biology of the cell. New York: Garland Publishing; 1994. p. 971–95.

    Google Scholar 

  34. Kershen RT, Atala A. Advances in injectable therapies for the treatment of incontinence and vesicoureteral reflux. Urol Clin North Am. 1999;26:81–94.

    Article  CAS  PubMed  Google Scholar 

  35. Bergsma JE, Rozema FR, Bos RRM, et al. Biocompatibility and degradatin mechanism of predegraded and non-degraded poly(lactide) implants: an animal study. J Mater Sci Mater Med. 1995;6:715–24.

    Article  CAS  Google Scholar 

  36. Chen F, Yoo JJ, Atala A. Acellular collagen matrix as a possible “off the shelf” biomaterial for urethral repair. Urology. 1999;54:407–10.

    Article  CAS  PubMed  Google Scholar 

  37. Palminteri E, Berdondini E, Colombo F, et al. Small intestinal submucosa (SIS) graft urethroplasty: short-term results. Eur Urol. 2007;51:1695–701.

    Article  PubMed  Google Scholar 

  38. Feng C, Xu YM, Fu Q, et al. Evaluation of the biocompatibility and mechanical properties of naturally derived and synthetic scaffolds for urethral reconstruction. J Biomed Mater Res A. 2010;94:317–25.

    Article  PubMed  Google Scholar 

  39. Koziak A, Marcheluk A, Dmowski T, et al. Reconstructive surgery of male urethra using human amnion membranes (grafts) – first announcement. Ann Transplant. 2004;9:21–4.

    PubMed  Google Scholar 

  40. Shakeri S, Haghpanah A, Khezri A, et al. Application of amniotic membrane as xenograft for urethroplasty in rabbit. Int Urol Nephrol. 2009;41:895–901.

    Article  PubMed  Google Scholar 

  41. Parnigotto PP, Gamba PG, Conconi MT, et al. Experimental defect in rabbit urethra repaired with acellular aortic matrix. Urol Res. 2000;28:46–51.

    Article  CAS  PubMed  Google Scholar 

  42. Bhargava S, Patterson JM, Inman RD, et al. Tissue-engineered buccal mucosa urethroplasty-clinical outcomes. Eur Urol. 2008;53:1263–9.

    Article  PubMed  Google Scholar 

  43. Pariente JL, Kim BS, Atala A. In vitro biocompatibility evaluation of naturally derived and synthetic biomaterials using normal human bladder smooth muscle cells. J Urol. 2002;167:1867–71.

    Article  PubMed  Google Scholar 

  44. Sievert KD, Bakircioglu ME, Nunes L, et al. Homologous acellular matrix graft for urethral reconstruction in the rabbit: histological and functional evaluation. J Urol. 2000;163:1958–65.

    Article  CAS  PubMed  Google Scholar 

  45. Olsen L, Bowald S, Busch C, et al. Urethral reconstruction with a new synthetic absorbable device. Scand J Urol Nephrol. 1992;26:323–6.

    Article  CAS  PubMed  Google Scholar 

  46. Dahms SE, Piechota HJ, Dahiya R, et al. Composition and biochemical properties of the bladder acellular matrix graft: comparative analysis in rat, pig and human. Br J Urol. 1998;82:411–9.

    Article  CAS  PubMed  Google Scholar 

  47. Yang B, Zhang Y, Zhou L, et al. Development of a porcine bladder acellular matrix with well-preserved extracellular bioactive factors for tissue engineering. Tissue Eng Part C Methods. 2010;16:1201–11.

    Article  CAS  PubMed  Google Scholar 

  48. Fu Q, Deng CL, Liu W, et al. Urethral replacement using epidermal cell-seeded tubular acellular bladder collagen matrix. BJU Int. 2007;99:1162–5.

    Article  PubMed  Google Scholar 

  49. Li C, Xu YM, Song LJ, et al. Preliminary experimental study of tissue-engineered urethral reconstruction using oral keratinocytes seeded on BAMG. Urol Int. 2008;81:290–5.

    Article  PubMed  Google Scholar 

  50. Li C, Xu YM, Song LJ, et al. Urethral reconstruction using oral keratinocyte seeded bladder acellular matrix grafts. J Urol. 2008;180:1538–42.

    Article  PubMed  Google Scholar 

  51. Wu S, Liu Y, Bharadwaj S, et al. Human urine-derived stem cells seeded in a modified 3D porous small intestinal submucosa scaffold for urethral tissue engineering. Biomaterials. 2011;32:1317–26.

    Article  PubMed  Google Scholar 

  52. Gilding DK. Biodegradable polymers. In: Williams DF, editor. Biocompatibility of clinical implant materials. Boca Raton: CRC Press; 1981. p. 209–32.

    Google Scholar 

  53. Barrera DA, Zylstra E, et al. Synthesis and RGD peptide modification of a new biodegradable copolymer poly (lactic acid-co-lysine). J Am Chem Soc. 1993;115:11010–1.

    Article  CAS  Google Scholar 

  54. Intveld PJA, Shen Z, Takens GAJ, et al. Glycine glycolic acid based copolymers. J Polym Sci [A1]. 1994;32:1063–9.

    Article  CAS  Google Scholar 

  55. Cook AD, Hrkach JS, Gao NN, et al. Characterization and development of RGD-peptide-modified poly(lactic acid-co-lysine) as an interactive, resorbable biomaterial. J Biomed Mater Res. 1997;35:513–23.

    Article  CAS  PubMed  Google Scholar 

  56. Peppas NA, Langer R. New challenges in biomaterials. Science. 1994;263:1715–20.

    Article  CAS  PubMed  Google Scholar 

  57. Bazeed MA, Thüroff JW, Schmidt RA, et al. New treatment for urethral strictures. Urology. 1983;21:53–7.

    Article  CAS  PubMed  Google Scholar 

  58. Holmes P. Applications of PHB-α microbially produced thermoplastic. Phys Technol. 1985;16:32–6.

    Article  CAS  Google Scholar 

  59. Hicks BG, Lopez EA, Eastman R, et al. Differential affinity of vitronectin versus collagen for synthetic biodegradable scaffolds for urethroplastic applications. Biomaterials. 2011;32:797–807.

    Article  CAS  PubMed  Google Scholar 

  60. Raya-Rivera A, Esquiliano DR, Yoo JJ, et al. Tissue-engineered autologous urethras for patients who need reconstruction: an observational study. Lancet. 2011;377:1175–82.

    Article  PubMed  Google Scholar 

  61. Fiala R, Vidlar A, Vrtal R, et al. Porcine small intestinal submucosa graft for repair of anterior urethral strictures. Eur Urol. 2007;51:1702–8.

    Article  PubMed  Google Scholar 

  62. El Kassaby A, Aboushwareb T, Atala A. Randomized comparative study between buccal mucosal and acellular bladder matrix grafts in complex anterior urethral strictures. J Urol. 2008;179:1432–6.

    Article  PubMed  Google Scholar 

  63. De Filippo RE, Yoo JJ, Atala A. Urethral replacement using cell seeded tubularized collagen matrices. J Urol. 2002;168:1789–92.

    Article  PubMed  Google Scholar 

  64. Bhargava S, Chapple CR, Bullock AJ, et al. Tissue-engineered buccal mucosa for substitution urethroplasty. BJU Int. 2004;93:807–11.

    Article  CAS  PubMed  Google Scholar 

  65. Dorin RP, Pohl HG, De Filippo RE, et al. Tubularized urethral replacement with unseeded matrices: what is the maximum distance for normal tissue regeneration? World J Urol. 2008;26:323–6.

    Article  PubMed  Google Scholar 

  66. Gu GL, Zhu YJ, Xia SJ, et al. Peritoneal cavity as bioreactor to grow autologous tubular urethral grafts in a rabbit model. World J Urol. 2010;28:227–32.

    Article  PubMed  Google Scholar 

  67. Zhang Y, McNeill E, Tian H, et al. Urine derived cells are a potential source for urological tissue reconstruction. J Urol. 2008;180:2226–33.

    Article  CAS  PubMed  Google Scholar 

  68. Bharadwaj S, Wu S, Rohozinski J, et al. Multipotential differentiation of human urine-derived stem cells. J Tissue Eng Regen Med. 2009;6:S293.

    Google Scholar 

  69. Feng C, Xu Y, Qiang F, et al. Reconstruction of three-dimensional neourethra using lingual keratinocytes and corporal smooth muschle cells seeded acellular corporal spongiosum. Tissue Eng Part A. 2011;17:3011–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Atala MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Terlecki, R.P., Atala, A. (2014). Tissue Engineering of the Urethra: The Basics, Current Concept, and the Future. In: Brandes, S., Morey, A. (eds) Advanced Male Urethral and Genital Reconstructive Surgery. Current Clinical Urology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-7708-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7708-2_36

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-7707-5

  • Online ISBN: 978-1-4614-7708-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics