Skip to main content
  • 2681 Accesses

Abstract

A successful systematic design is extremely important for wireless power transfer. It helps to clarify the features that are the most important and that can be given up. It also helps to develop antennas and circuits techniques for the system. In this chapter, we focus on the system level design of the wireless power transfer for biomedical applications. Although biomedical applications may be variable, we try to model, extract, and discuss the common features for their power transfers. First, the basic working principle of the inductive coupling is briefly depicted. Second, a unified systematic model is proposed for the transfers. Three types of the system components, including the power antennas, the power converters, and the power management are to be described. Third, typical challenges in the systematic design are to be summed up. The most challenging part is to trade off among various characteristics. At last, the electromagnetic exposure to human body is discussed, which is a necessary consideration in the systematic design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thidé, B. (2004). Electromagnetic field theory. Uppsala: Upsilon Books.

    Google Scholar 

  2. Winders, J. (2002). Power transformers principles and applications. New York: Marcel Dekker Inc.

    Book  Google Scholar 

  3. Kurs, A., Karalis, A., Moffatt, R., Joannopoulos, J. D., et al. (2007). Wireless power transfer via strongly coupled magnetic resonances. Science, 317(5834), 83–86.

    Article  MathSciNet  Google Scholar 

  4. O’Handley, R. C., Huang, J. K., Bono, D. C., et al. (2008). Improved wireless, transcutaneous power transmission for in vivo applications. Sensors Journal, IEEE, 8(1), 57–62.

    Article  Google Scholar 

  5. Casanova, J. J., Low, Z. N., & Lin, J. (2009). A loosely coupled planar wireless power system for multiple receivers. IEEE Transactions on Industrial Electronics, 56(8), 3060–3068.

    Article  Google Scholar 

  6. Cannon, B. L., Hoburg, J. F., Stancil, D. D., et al. (2009). Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers. IEEE Transactions on Power Electronics, 24(7), 1819–1825.

    Article  Google Scholar 

  7. Imura, T., Okabe, H., Uchida T., & et al. (2009) Study on open and short end helical antennas with capacitor in series of wireless power transfer using magnetic resonant couplings. IECON (pp. 3848–3853).

    Google Scholar 

  8. O’Driscoll, S., Poon, A., & Meng, T. H. (2009). A mm-sized implantable power receiver with adaptive link compensation. ISSCC (pp. 294–295).

    Google Scholar 

  9. Casanova, J. J., Low, Z. N., & Lin, J. (2009). Design and optimization of a class-e amplifier for a loosely coupled planar wireless power system. IEEE Transactions on Circuits and Systems II: Express Briefs, 56(11), 830–834.

    Article  Google Scholar 

  10. Schwarzer, U., & De Doncker, R. W. (2001). Power losses of IGBTs in an inverter prototype for high frequency inductive heating applications. IECON, 2, 793–798.

    Google Scholar 

  11. Saitou, M., & Shimizu, T. (2000). A novel strategy of the high power PWM inverter with the series active filter. ISIE (vol. 1, pp. 67–72).

    Google Scholar 

  12. KuanC.-W., & Lin, H.-C. (2012). Near-independently regulated 5-output single-inductor DC–DC buck converter delivering 1.2 W/mm2 in 65 nm CMOS. ISSCC (pp. 274–276).

    Google Scholar 

  13. Joyce,K., Yogesh, R., Naveen, V., & et al. (2008) A 65 nm Sub-VT microcontroller with integrated SRAM and switched-capacitor DC–DC converter. ISSCC (pp. 318–616).

    Google Scholar 

  14. Jiang, W., Yu, F., Wu, Y., & et al. (2012). Wireless power management of small scale distributed hydrogen harvesting system with full digital control. In: International Conference on Advanced Mechatronic Systems (pp. 149–153).

    Google Scholar 

  15. Guochen, A., & Zhanyou, S. (2007) Programmable voltage regulator design based on digitally controlled potentiometer. ICEM (pp. 1–453).

    Google Scholar 

  16. RamRakhyani, A. K., Mirabbasi, S., & Chiao, M. (2011). Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants. IEEE Transactions on Biomedical Circuits and Systems, 5(1), 48–63.

    Article  Google Scholar 

  17. Zhang, F., Hackworth, S. A., Fu, W., et al. (2011). Relay effect of wireless power transfer using strongly coupled magnetic resonances. IEEE Transactions on Magnetics, 47(5), 1478–1481.

    Article  Google Scholar 

  18. Ghovanloo, M., & Najafi, K. (2004). Fully integrated wideband high-current rectifiers for inductively powered devices. Solid-State Circuits, IEEE Journal of, 39(11), 1976–1984.

    Article  Google Scholar 

  19. Yoo, J., Yan, L., Lee, S., Kim, Y., et al. (2010) A 5.2 mW self-configured wearable body sensor network controller and a 12 uW 54.9 % efficiency wirelessly powered sensor for continuous health monitoring system. ISSCC (pp. 178–188).

    Google Scholar 

  20. Lee, S. B., Lee, H.-M., Kiani, M., et al. (2010). An inductively powered scalable 32-channel wireless neural recording system-on-a-chip for neuroscience applications. IEEE Transactions on Biomedical Circuits and Systems, 4(6), 360–371.

    Article  Google Scholar 

  21. Nakamoto, H., Yamazaki, D., Yamamoto, T., & et al. (2006). A passive UHF RFID tag LSI with 36.6 % efficiency CMOS-only rectifier and current-mode demodulator in 0.35 μm FeRAM technology. ISSCC (pp. 1201–1210).

    Google Scholar 

  22. Yao, Y., Zhang, H., & Geng, Z. (2011). Wireless charger prototype based on strong coupled magnetic resonance. EMEIT (pp. 2252–2254).

    Google Scholar 

  23. Ning, L., Xiao, Y., & Ning, Z. (2011). Design of transcutaneous coupling wireless charger. ICCSE (pp. 41–46).

    Google Scholar 

  24. Dai, D., & Liu, J. (2012). Human powered wireless charger for low-power mobile electronic devices. IEEE Transactions on Consumer Electronics, 58(3), 767–774.

    Article  Google Scholar 

  25. Jiang, H., Brazis, P., Tabaddor, M., & Bablo, J. (2012). Safety considerations of wireless charger for electric vehicles—A review paper. ISPCE (pp. 1–6).

    Google Scholar 

  26. Karthikeyan, L., & Amrutur, B. (2012). Signal-powered low-drop-diode equivalent circuit for full-wave bridge rectifier. IEEE Transactions on Power Electronics, 27(10), 4192–4201.

    Article  Google Scholar 

  27. Heljo, P. S., Li, M., Lilja, K. E., et al. (2013). Printed half-wave and full-wave rectifier circuits based on organic diodes. IEEE Transactions on Electron Devices, 60(2), 870–874.

    Article  Google Scholar 

  28. Zhang, F., Liu, X., Hackworth, S. A., & et al. (2009). In vitro and in vivo studies on wireless powering of medical sensors and implantable devices. LiSSA (pp. 84–87).

    Google Scholar 

  29. Lenaerts, B., & Puers, R. (2006). An omnidirectional transcutaneous power link for capsule endoscopy. BSN.

    Google Scholar 

  30. Leung, C. Y., Leung, K. N., & Mok, P. K. (2004). Design of a 1.5-V high-order curvature-compensated CMOS bandgap reference. ISCAS.

    Google Scholar 

  31. Lee, E. K. (2010). Low voltage CMOS bandgap references with temperature compensated reference current output. ISCAS (pp. 1643–1646).

    Google Scholar 

  32. Minch, B. A. (2002). A low-voltage MOS cascode bias circuit for all current levels. ISCAS (pp. 619-622).

    Google Scholar 

  33. Lim, J., Lee, K., & Cho, K. (2010). Ultra low power RC oscillator for system wake-up using highly precise auto-calibration technique. ESSCIRC (pp. 274–277).

    Google Scholar 

  34. Lasanen, K., Raisanen-Ruotsalainen, E., & Kostamovaara, J. (2002). A 1-V, self adjusting, 5-MHz CMOS RC-oscillator. ISCAS (pp. 377–380).

    Google Scholar 

  35. Sun, Y., Jeong, C., Han, S., & Lee, S. (2001). A high speed comparator based active rectifier for wireless power transfer systems. IMWS-IRFPT (pp. 1–2).

    Google Scholar 

  36. Cha, H.-K., Park, W.-T., & Je, M. (2012). A CMOS Rectifier With a Cross-Coupled Latched Comparator for Wireless Power Transfer in Biomedical Applications. IEEE Transactions on Circuits and Systems II: Express Briefs, 59(7), 409–413.

    Article  Google Scholar 

  37. Guo, S., & Lee, H. (2007). An efficiency-enhanced integrated CMOS rectifier with comparator-controlled switches for transcutaneous powered implants. CICC (pp. 385–388).

    Google Scholar 

  38. Sun, T. J., Xie, X., Li,G., Gu, Y., Li, X., & Wang, Z. (2011). An omnidirectional wireless power receiving IC with 93.6 % efficiency CMOS rectifier and Skipping Booster for implantable bio-microsystems. A-SSCC (pp. 185–188).

    Google Scholar 

  39. Serra-Graells, F., Gomez, L., & Huertas, J. L. (2004). A true-1-V 300-μW CMOS-subthreshold log-domain hearing-aid-on-chip. IEEE Journal of Solid-State Circuits, 39(8), 1271–1281.

    Article  Google Scholar 

  40. Qiao, P., Corporaal, H., & Lindwer, M. (2011). A 0.964 mW digital hearing aid system. DATE (pp. 1–4).

    Google Scholar 

  41. Wong, L. S., Hossain, S., Ta, A., Edvinsson, J., Rivas, D. H., & Naas, H. (2004). A very low-power CMOS mixed-signal IC for implantable pacemaker applications. IEEE Journal of Solid-State Circuits, 39(12), 2446–2456.

    Article  Google Scholar 

  42. Lee, S.-Y., Su, M. Y., Liang, M.-C., et al. (2011). A programmable implantable microstimulator SoC with wireless telemetry: Application in closed-loop endocardial stimulation for cardiac pacemaker. IEEE Transactions on Biomedical Circuits and Systems, 5(6), 511–522.

    Article  Google Scholar 

  43. Sun, T., Xie, X., Li, G., et al. (2012). A two-hop wireless power transfer system with an efficiency-enhanced power receiver for motion-free capsule endoscopy inspection. IEEE Transactions on Biomedical Engineering, 59(11), 3247–3254.

    Article  Google Scholar 

  44. Chiu, H.-W., Lin, M.-L., Lin, C.-W., et al. (2010). Pain Control on demand based on pulsed radio-frequency stimulation of the dorsal root ganglion using a batteryless implantable CMOS SoC. IEEE Transactions on Biomedical Circuits and Systems, 4(6), 350–359.

    Article  MathSciNet  Google Scholar 

  45. Si, P., Hu, A. P., Malpas, S., et al. (2008). A frequency control method for regulating wireless power to implantable devices. IEEE Transactions on Biomedical Circuits and Systems, 2(1), 22–29.

    Article  Google Scholar 

  46. Shiba, K., Nagato, T., Tsuji, T., et al. (2008). Energy transmission transformer for a wireless capsule endoscope: Analysis of specific absorption rate and current density in biological tissue. IEEE Transactions on Biomedical Engineering, 55(7), 1864–1871.

    Article  Google Scholar 

  47. ICNIRP Guidelines For Limiting Exposure To Time-Varying Electric, Magnetic and Electromagnetic Field. International Commission on Non-Ionizing Radiation Protection, 1998.

    Google Scholar 

  48. IEEE Standard for Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz–300 GHz. IEEE Std C95.

    Google Scholar 

  49. Morrow, G. (2000). Progress in MRI magnets. IEEE Transactions on Applied Superconductivity, 10(1), 744–751.

    Article  Google Scholar 

  50. Daels, J. (1973). Microwave heating of uterine wall during parturition. Obstetrics and Gynecology, 42, 76–79.

    Google Scholar 

  51. Kallen, B., Malmquist, G., & Moritz, U. (1982). Delivery outcome among physiotherapists in sweden 0 is nonionizing radiation a fetal hazard. Archives of Environmental Health, 37, 81–85.

    Article  Google Scholar 

  52. Chatterjee, I., Wu, D., & Gandhi, O. P. (1986). Human body impedance and threshold currents for perception and pain for contact hazard analysis in the VLF-MF band. IEEE Transactions on Biomedical Engineering, 5, 486–494.

    Article  Google Scholar 

  53. Hand, J. W. (1984). Biological effects and dosimetry of nonionizing radiation. International Journal of Radiation Biology, 45(2), 197–198.

    Article  MathSciNet  Google Scholar 

  54. Guy, A. W., Lin, J. C., Kramar, P. O., & Emery, A. F. (1975). Effect of 2450-MHz radiation on the rabbit eye. IEEE Transactions on Microwave Theory and Techniques, 23(6), 492–498.

    Article  Google Scholar 

  55. Shellock, F. G., & Crues, J. V. (1987). Temperature, heart rate, and blood pressure changes associated with clinical MR imaging at 1.5 T. Radiology, 163(1), 259–262.

    Google Scholar 

  56. Repacholi, M. H., Basten, A., Gebski, V., et al. (1997). Lymphomas in Eμ-Pim1 transgenic mice exposed to pulsed 900 MHz electromagnetic fields. Radiation Research, 147(5), 631–640.

    Article  Google Scholar 

  57. Stern, S., Margolin, L., Weiss, B., et al. (1979). Microwaves: Effect on thermoregulatory behavior in rats. Science, 206(4423), 1198–1201.

    Article  Google Scholar 

  58. Adair, E. R., & Adams, B. W. (1980). Microwaves modify thermoregulatory behavior in squirrel monkey. Bioelectromagnetics, 1(1), 1–20.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianjia Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sun, T., Xie, X., Wang, Z. (2013). Systematic Designs. In: Wireless Power Transfer for Medical Microsystems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7702-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7702-0_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7701-3

  • Online ISBN: 978-1-4614-7702-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics