Bioreactor Expansion of Pluripotent Stem Cells

  • Jaymi T. Taiani
  • Mehdi Shafa
  • Derrick E. Rancourt


Pluripotent stem cells (PSCs) including embryonic stem cells and induced pluripotent stem cells (iPSCs) can indefinitely self-renew and contribute to all tissue types of the adult organism. The clinical application of stem cells depends on the availability of efficient protocols for the expansion of pluripotent cells as well as their differentiated progeny. Stirred suspension bioreactors (SSBs) propose several benefits over the conventional use of static culture flasks, and their homogeneous culture environment facilitates the large-scale expansion and maintenance of PSCs required for clinical studies at less cost. More recently, stem cell researchers have begun to establish effective bioreactor expansion techniques to generate “clinically relevant” numbers of stem cells. In this chapter, after a brief background on stem cells and their benefits, different methods and challenges for the optimized expansion and differentiation of murine and human PSCs in suspension bioreactors will be discussed. Furthermore, the advantageous role of SSBs for the derivation of murine iPSCs will be described. In the last part, different suggested mechanisms about the effect of shear stress on the pluripotency of stem cells in bioreactors will be described.


Pluripotent Stem Cell Bioreactor Culture Human ESCs Pluripotency Marker Inoculation Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Khademhosseini A, Vacanti JP, Langer R. Progress in tissue engineering. Sci Am. 2009;300(5):64–71.PubMedCrossRefGoogle Scholar
  3. 3.
    Bruder SP, et al. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am. 1998;80(7):985–96.PubMedGoogle Scholar
  4. 4.
    Kon E, et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res. 2000;49(3):328–37.PubMedCrossRefGoogle Scholar
  5. 5.
    Petite H, et al. Tissue-engineered bone regeneration. Nat Biotechnol. 2000;18(9):959–63.PubMedCrossRefGoogle Scholar
  6. 6.
    Bensaid W, et al. De novo reconstruction of functional bone by tissue engineering in the metatarsal sheep model. Tissue Eng. 2005;11(5–6):814–24.PubMedCrossRefGoogle Scholar
  7. 7.
    Kruyt MC, et al. The effect of cell-based bone tissue engineering in a goat transverse process model. Biomaterials. 2006;27(29):5099–106.PubMedCrossRefGoogle Scholar
  8. 8.
    Mastrogiacomo M, et al. Reconstruction of extensive long bone defects in sheep using resorbable bioceramics based on silicon stabilized tricalcium phosphate. Tissue Eng. 2006;12(5):1261–73.PubMedCrossRefGoogle Scholar
  9. 9.
    Becker AJ, McCulloch E, Till JE. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature. 1963;197:452–4.PubMedCrossRefGoogle Scholar
  10. 10.
    Kraus KH, Kirker-Head C. Mesenchymal stem cells and bone regeneration. Vet Surg. 2006;35(3):232–42.PubMedCrossRefGoogle Scholar
  11. 11.
    Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol. 2007;213(2):341–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981;78(12):7634–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292(5819):154–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Thomson JA, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Iannaccone PM, et al. Pluripotent embryonic stem cells from the rat are capable of producing chimeras. Dev Biol. 1994;163(1):288–92.PubMedCrossRefGoogle Scholar
  16. 16.
    Graves KH, Moreadith RW. Derivation and characterization of putative pluripotential embryonic stem cells from preimplantation rabbit embryos. Mol Reprod Dev. 1993;36(4):424–33.PubMedCrossRefGoogle Scholar
  17. 17.
    Hatoya S, et al. Isolation and characterization of embryonic stem-like cells from canine blastocysts. Mol Reprod Dev. 2006;73(3):298–305.PubMedCrossRefGoogle Scholar
  18. 18.
    Li M, et al. Isolation and culture of embryonic stem cells from porcine blastocysts. Mol Reprod Dev. 2003;65(4):429–34.PubMedCrossRefGoogle Scholar
  19. 19.
    Thomson JA, et al. Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci U S A. 1995;92(17):7844–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Thomson JA, et al. Pluripotent cell lines derived from common marmoset (Callithrix jacchus) blastocysts. Biol Reprod. 1996;55(2):254–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Meng G, et al. Derivation of human embryonic stem cell lines after blastocyst microsurgery. Biochem Cell Biol. 2010;88(3):479–90.PubMedCrossRefGoogle Scholar
  22. 22.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.PubMedCrossRefGoogle Scholar
  23. 23.
    Takahashi K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.PubMedCrossRefGoogle Scholar
  24. 24.
    Maherali N, et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell. 2007;1(1):55–70.PubMedCrossRefGoogle Scholar
  25. 25.
    Wernig M, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature. 2007;448(7151):318–24.PubMedCrossRefGoogle Scholar
  26. 26.
    Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448(7151):313–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Guenther MG, et al. Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells. Cell Stem Cell. 2010;7(2):249–57.PubMedCrossRefGoogle Scholar
  28. 28.
    Okita K, et al. Generation of mouse induced pluripotent stem cells without viral vectors. Science. 2008;322(5903):949–53.PubMedCrossRefGoogle Scholar
  29. 29.
    Boland MJ, et al. Adult mice generated from induced pluripotent stem cells. Nature. 2009;461(7260):91–4.PubMedCrossRefGoogle Scholar
  30. 30.
    Kang L, et al. iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell. 2009;5(2):135–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Smith KP, Luong MX, Stein GS. Pluripotency: toward a gold standard for human ES and iPS cells. J Cell Physiol. 2009;220(1):21–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Zhao XY, et al. iPS cells produce viable mice through tetraploid complementation. Nature. 2009;461(7260):86–90.PubMedCrossRefGoogle Scholar
  33. 33.
    Yamanaka S. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell. 2007;1(1):39–49.PubMedCrossRefGoogle Scholar
  34. 34.
    Saha K, Jaenisch R. Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell. 2009;5(6):584–95.PubMedCrossRefGoogle Scholar
  35. 35.
    Kehoe DE, et al. Scalable stirred-suspension bioreactor culture of human pluripotent stem cells. Tissue Eng Part A. 2010;16(2):405–21.PubMedCrossRefGoogle Scholar
  36. 36.
    Oh SK, et al. High density cultures of embryonic stem cells. Biotechnol Bioeng. 2005;91(5):523–33.PubMedCrossRefGoogle Scholar
  37. 37.
    Gilbertson JA. Scaling up neural stem cell expansion in suspension bioreactors. M.Sc. Thesis, University of Calgary, Calgary; 2005.Google Scholar
  38. 38.
    Jing D, et al. Stem cells for heart cell therapies. Tissue Eng Part B Rev. 2008;14(4):393–406.PubMedCrossRefGoogle Scholar
  39. 39.
    Tzanakakis ES, et al. Extracorporeal tissue engineered liver-assist devices. Annu Rev Biomed Eng. 2000;2:607–32.PubMedCrossRefGoogle Scholar
  40. 40.
    Taylor CJ, et al. Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet. 2005;366(9502):2019–25.PubMedCrossRefGoogle Scholar
  41. 41.
    Nakatsuji N, Nakajima F, Tokunaga K. HLA-haplotype banking and iPS cells. Nat Biotechnol. 2008;26(7):739–40.PubMedCrossRefGoogle Scholar
  42. 42.
    Dang SM, et al. Efficiency of embryoid body formation and hematopoietic development from embryonic stem cells in different culture systems. Biotechnol Bioeng. 2002;78(4):442–53.PubMedCrossRefGoogle Scholar
  43. 43.
    Zandstra PW, et al. Scalable production of embryonic stem cell-derived cardiomyocytes. Tissue Eng. 2003;9(4):767–78.PubMedCrossRefGoogle Scholar
  44. 44.
    Dang SM, et al. Controlled, scalable embryonic stem cell differentiation culture. Stem Cells. 2004;22(3):275–82.PubMedCrossRefGoogle Scholar
  45. 45.
    Schroeder M, et al. Differentiation and lineage selection of mouse embryonic stem cells in a stirred bench scale bioreactor with automated process control. Biotechnol Bioeng. 2005;92(7):920–33.PubMedCrossRefGoogle Scholar
  46. 46.
    Gerecht-Nir S, Cohen S, Itskovitz-Eldor J. Bioreactor cultivation enhances the efficiency of human embryoid body (hEB) formation and differentiation. Biotechnol Bioeng. 2004;86(5):493–502.PubMedCrossRefGoogle Scholar
  47. 47.
    Cormier JT, et al. Expansion of undifferentiated murine embryonic stem cells as aggregates in suspension culture bioreactors. Tissue Eng. 2006;12(11):3233–45.PubMedCrossRefGoogle Scholar
  48. 48.
    Fok EY, Zandstra PW. Shear-controlled single-step mouse embryonic stem cell expansion and embryoid body-based differentiation. Stem Cells. 2005;23(9):1333–42.PubMedCrossRefGoogle Scholar
  49. 49.
    Krawetz R, et al. Large-scale expansion of pluripotent human embryonic stem cells in stirred-suspension bioreactors. Tissue Eng Part C Methods. 2009;16(4):573–82.CrossRefGoogle Scholar
  50. 50.
    Shafa M, et al. Expansion and long-term maintenance of induced pluripotent stem cells in stirred suspension bioreactors. J Tissue Eng Regen Med. 2012;6(6):462–72.PubMedCrossRefGoogle Scholar
  51. 51.
    Shafa M, et al. Derivation of iPSCs in stirred suspension bioreactors. Nat Methods. 2012;9(5):465–6.PubMedCrossRefGoogle Scholar
  52. 52.
    Kallos MS, Sen A, Behie LA. Large-scale expansion of mammalian neural stem cells: a review. Med Biol Eng Comput. 2003;41(3):271–82.PubMedCrossRefGoogle Scholar
  53. 53.
    Kallos MS, Behie LA. Inoculation and growth conditions for high-cell-density expansion of mammalian neural stem cells in suspension bioreactors. Biotechnol Bioeng. 1999;63(4):473–83.PubMedCrossRefGoogle Scholar
  54. 54.
    Gilbertson JA, et al. Scaled-up production of mammalian neural precursor cell aggregates in computer-controlled suspension bioreactors. Biotechnol Bioeng. 2006;94(4):783–92.PubMedCrossRefGoogle Scholar
  55. 55.
    Baksh D, Davies JE, Zandstra PW. Adult human bone marrow-derived mesenchymal progenitor cells are capable of adhesion-independent survival and expansion. Exp Hematol. 2003;31(8):723–32.PubMedCrossRefGoogle Scholar
  56. 56.
    Kogler G, et al. An eight-fold ex vivo expansion of long-term culture-initiating cells from umbilical cord blood in stirred suspension cultures. Bone Marrow Transplant. 1998;21 Suppl 3:S48–53.PubMedGoogle Scholar
  57. 57.
    Eridani S, et al. Cytokine effect on ex vivo expansion of haemopoietic stem cells from different human sources. Biotherapy. 1998;10(4):295–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Zandstra PW, Eaves CJ, Piret JM. Expansion of hematopoietic progenitor cell populations in stirred suspension bioreactors of normal human bone marrow cells. Biotechnology (N Y). 1994;12(9):909–14.CrossRefGoogle Scholar
  59. 59.
    zur Nieden NI, et al. Embryonic stem cells remain highly pluripotent following long term expansion as aggregates in suspension bioreactors. J Biotechnol. 2007;129(3):421–32.PubMedCrossRefGoogle Scholar
  60. 60.
    Marks DM. Equipment design considerations for large scale cell culture. Cytotechnology. 2003;42(1):21–33.PubMedCrossRefGoogle Scholar
  61. 61.
    Abranches E, et al. Expansion of mouse embryonic stem cells on microcarriers. Biotechnol Bioeng. 2007;96(6):1211–21.PubMedCrossRefGoogle Scholar
  62. 62.
    Fernandes AM, et al. Mouse embryonic stem cell expansion in a microcarrier-based stirred culture system. J Biotechnol. 2007;132(2):227–36.PubMedCrossRefGoogle Scholar
  63. 63.
    Magyar JP, et al. Mass production of embryoid bodies in microbeads. Ann N Y Acad Sci. 2001;944:135–43.PubMedCrossRefGoogle Scholar
  64. 64.
    Hwang YS, et al. The use of murine embryonic stem cells, alginate encapsulation, and rotary microgravity bioreactor in bone tissue engineering. Biomaterials. 2009;30(4):499–507.PubMedCrossRefGoogle Scholar
  65. 65.
    Alfred R, et al. Large-scale production of murine embryonic stem cell-derived osteoblasts and chondrocytes on microcarriers in serum-free media. Biomaterials. 2011;32(26):6006–16.PubMedGoogle Scholar
  66. 66.
    Watanabe K, et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol. 2007;25(6):681–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Fingar DC, Blenis J. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene. 2004;23(18):3151–71.PubMedCrossRefGoogle Scholar
  68. 68.
    Proud CG. The multifaceted role of mTOR in cellular stress responses. DNA Repair (Amst). 2004;3(8–9):927–34.CrossRefGoogle Scholar
  69. 69.
    Yang Q, Guan KL. Expanding mTOR signaling. Cell Res. 2007;17(8):666–81.PubMedCrossRefGoogle Scholar
  70. 70.
    Yamanaka S, Blau HM. Nuclear reprogramming to a pluripotent state by three approaches. Nature. 2010;465(7299):704–12.PubMedCrossRefGoogle Scholar
  71. 71.
    Fluri DA, et al. Derivation, expansion and differentiation of induced pluripotent stem cells in continuous suspension cultures. Nat Methods. 2012;9(5):509–16.PubMedCrossRefGoogle Scholar
  72. 72.
    Sen A, Kallos MS, Behie LA. Expansion of mammalian neural stem cells in bioreactors: effect of power input and medium viscosity. Brain Res Dev Brain Res. 2002;134(1–2):103–13.PubMedCrossRefGoogle Scholar
  73. 73.
    Shepherd RD, Kos SM, Rinker KD. Long term shear stress leads to increased phosphorylation of multiple MAPK species in cultured human aortic endothelial cells. Biorheology. 2009;46(6):529–38.PubMedGoogle Scholar
  74. 74.
    Yang J, et al. Rb/E2F4 and Smad2/3 link survivin to TGF-beta-induced apoptosis and tumor progression. Oncogene. 2008;27(40):5326–38.PubMedCrossRefGoogle Scholar
  75. 75.
    Shepherd RD, Kos SM, Rinker KD. Flow dependent Smad2 phosphorylation and TGIF nuclear localization in human aortic endothelial cells. Am J Physiol Heart Circ Physiol. 2011;301(1):H98–107.PubMedCrossRefGoogle Scholar
  76. 76.
    Watabe T, Miyazono K. Roles of TGF-beta family signaling in stem cell renewal and differentiation. Cell Res. 2009;19(1):103–15.PubMedCrossRefGoogle Scholar
  77. 77.
    Boiani M, Scholer HR. Regulatory networks in embryo-derived pluripotent stem cells. Nat Rev Mol Cell Biol. 2005;6(11):872–84.PubMedCrossRefGoogle Scholar
  78. 78.
    Anton R, Kestler HA, Kuhl M. Beta-catenin signaling contributes to stemness and regulates early differentiation in murine embryonic stem cells. FEBS Lett. 2007;581(27):5247–54.PubMedCrossRefGoogle Scholar
  79. 79.
    Sato N, et al. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med. 2004;10(1):55–63.PubMedCrossRefGoogle Scholar
  80. 80.
    Avvisato CL, et al. Mechanical force modulates global gene expression and beta-catenin signaling in colon cancer cells. J Cell Sci. 2007;120(Pt 15):2672–82.PubMedCrossRefGoogle Scholar
  81. 81.
    Norvell SM, et al. Fluid shear stress induces beta-catenin signaling in osteoblasts. Calcif Tissue Int. 2004;75(5):396–404.PubMedCrossRefGoogle Scholar
  82. 82.
    Estrada R, et al. Endothelial cell culture model for replication of physiological profiles of pressure, flow, stretch, and shear stress in vitro. Anal Chem. 2011;83(8):3170–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Huang P, et al. Role of Sox2 and Oct4 in predicting survival of hepatocellular carcinoma patients after hepatectomy. Clin Biochem. 2011;44(8–9):582–9.PubMedCrossRefGoogle Scholar
  84. 84.
    Lengerke C, et al. Expression of the embryonic stem cell marker SOX2 in early-stage breast carcinoma. BMC Cancer. 2011;11:42.PubMedCrossRefGoogle Scholar
  85. 85.
    Tsai LL, et al. Markedly increased Oct4 and Nanog expression correlates with cisplatin resistance in oral squamous cell carcinoma. J Oral Pathol Med. 2011;40(8):621–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Wu Y, et al. Up-regulation of microRNA-145 promotes differentiation by repressing OCT4 in human endometrial adenocarcinoma cells. Cancer. 2011;117(17):3989–98.PubMedCrossRefGoogle Scholar
  87. 87.
    Dreesen O, Brivanlou AH. Signaling pathways in cancer and embryonic stem cells. Stem Cell Rev. 2007;3(1):7–17.PubMedCrossRefGoogle Scholar
  88. 88.
    Cormier JT. Expansion of embryonic stem cells as aggregates in suspension culture bioreactors. M.Sc. Thesis, University of Calgary, Calgary; 2006.Google Scholar
  89. 89.
    Taiani JT, et al. Reduced differentiation efficiency of murine embryonic stem cells in stirred suspension bioreactors. Stem Cells Dev. 2010;19(7):989–98.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media New York 2013

Authors and Affiliations

  • Jaymi T. Taiani
    • 1
  • Mehdi Shafa
    • 2
  • Derrick E. Rancourt
    • 2
  1. 1.Foothills Hospital, McCaig Institute for Bone and Joint HealthCalgaryCanada
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of CalgaryCalgaryCanada

Personalised recommendations