Human Mammary Epithelial Stem/Progenitor Cells

  • Patricia J. Keller
  • Lisa M. Arendt
  • Charlotte Kuperwasser
Chapter

Abstract

Human breast tissue is highly dynamic, undergoing extensive development and differentiation after birth during puberty, pregnancy, and lactation. The ability to sustain the tissue through, potentially, multiple rounds of pregnancies and lactations in a woman’s lifetime suggests the presence of tissue-resident stem/progenitor cells that maintain the two main lineages of the breast epithelium, luminal and basal/myoepithelial cells. Although human breast tissue is functionally similar to the murine mammary gland, structural and developmental differences suggest that the organization and regulation of the epithelial hierarchy in humans may be more complex. Taking cues from studies of mouse and rat mammary gland biology, much research effort has been expended into characterizing the human breast epithelial hierarchy. The use of epithelial cell surface markers coupled with assays to define progenitor activity in vitro and in vivo has greatly expanded our understanding. While the full picture of the human mammary hierarchy is still incomplete, it is instructive for the understanding of heterogeneity in breast cancers and how this may relate to patient treatments and outcomes.

Keywords

Estrogen Lactate Leukemia Aldehyde Trypsin 

Abbreviations

ALDH

Aldehyde dehydrogenase

α-SMA

Alpha smooth muscle actin

CALLA

Common acute lymphoblastic leukemia antigen

CK

Cytokeratin

EGF

Epidermal growth factor

EMA

Epithelial membrane antigen

EpCAM

Epithelial cell adhesion molecule

ER

Estrogen receptor

ESA

Epithelial-specific antigen

HIM

Human-in-mouse

HMEC

Human mammary epithelial cell

MaSC

Mammary stem cell

ME

Myoepithelial

MRUs

Mammary repopulating units

MUC1

Mucin-1

PR

Progesterone receptor

TDLU

Terminal ductal lobular unit

TEB

Terminal end bud

vHMEC

Variant human mammary epithelial cell

Notes

Acknowledgments

We apologize to the authors whose work we could not cite due to space limitations. This work was supported by grants from the ACS-New England Division-Broadway on Beachside Postdoctoral Fellowship (PK), the Raymond and Beverly Sackler Foundation (PK and CK), the Breast Cancer Research Foundation (CK), the DOD Breast Cancer Research Program (PK, CK), the NIH/NCI (CK, LA), the National Center for Research Resources (LA), and the Breast Cancer Alliance (LA).

References

  1. 1.
    Howard BA, Gusterson BA. Human breast development. J Mammary Gland Biol Neoplasia. 2000;5(2):119–37.PubMedCrossRefGoogle Scholar
  2. 2.
    Anbazhagan R, Bartek J, Monaghan P, Gusterson BA. Growth and development of the human infant breast. Am J Anat. 1991;192(4):407–17.PubMedCrossRefGoogle Scholar
  3. 3.
    Hovey RC, Trott JF, Vonderhaar BK. Establishing a framework for the functional mammary gland: from endocrinology to morphology. J Mammary Gland Biol Neoplasia. 2002;7(1):17–38.PubMedCrossRefGoogle Scholar
  4. 4.
    Cardiff RD, Wellings SR. The comparative pathology of human and mouse mammary glands. J Mammary Gland Biol Neoplasia. 1999;4(1):105–22.PubMedCrossRefGoogle Scholar
  5. 5.
    Atherton AJ, Monaghan P, Warburton MJ, Robertson D, Kenny AJ, Gusterson BA. Dipeptidyl peptidase IV expression identifies a functional sub-population of breast fibroblasts. Int J Cancer. 1992;50(1):15–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Clevenger CV, Furth PA, Hankinson SE, Schuler LA. The role of prolactin in mammary carcinoma. Endocr Rev. 2003;24(1):1–27.PubMedCrossRefGoogle Scholar
  7. 7.
    Sleeman KE, Kendrick H, Robertson D, Isacke CM, Ashworth A, Smalley MJ. Dissociation of estrogen receptor expression and in vivo stem cell activity in the mammary gland. J Cell Biol. 2007;176(1):19–26. doi:jcb.200604065 [pii]10.1083/jcb.200604065.PubMedCrossRefGoogle Scholar
  8. 8.
    Russo J, Rivera R, Russo IH. Influence of age and parity on the development of the human breast. Breast Cancer Res Treat. 1992;23(3):211–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Russo J, Lynch H, Russo IH. Mammary gland architecture as a determining factor in the susceptibility of the human breast to cancer. Breast J. 2001;7(5):278–91.PubMedCrossRefGoogle Scholar
  10. 10.
    Wellings SR, Jensen HM, Marcum RG. An atlas of subgross pathology of the human breast with special reference to possible precancerous lesions. J Natl Cancer Inst. 1975;55(2):231–73.PubMedGoogle Scholar
  11. 11.
    Dairkee SH, Puett L, Hackett AJ. Expression of basal and luminal epithelium-specific keratins in normal, benign, and malignant breast tissue. J Natl Cancer Inst. 1988;80(9):691–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Petersen OW, Polyak K. Stem cells in the human breast. Cold Spring Harb Perspect Biol. 2010;2(5):a003160.PubMedCrossRefGoogle Scholar
  13. 13.
    Jolicoeur F, Gaboury LA, Oligny LL. Basal cells of second trimester fetal breasts: immunohistochemical study of myoepithelial precursors. Pediatr Dev Pathol. 2003;6(5):398–413.PubMedCrossRefGoogle Scholar
  14. 14.
    Bartow SA. Use of the autopsy to study ontogeny and expression of the estrogen receptor gene in human breast. J Mammary Gland Biol Neoplasia. 1998;3(1):37–48.PubMedCrossRefGoogle Scholar
  15. 15.
    Visvader JE. Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev. 2009;23(22):2563–77.PubMedCrossRefGoogle Scholar
  16. 16.
    Villadsen R, Fridriksdottir AJ, Ronnov-Jessen L, Gudjonsson T, Rank F, LaBarge MA, Bissell MJ, Petersen OW. Evidence for a stem cell hierarchy in the adult human breast. J Cell Biol. 2007;177(1):87–101.PubMedCrossRefGoogle Scholar
  17. 17.
    Bartek J, Taylor-Papadimitriou J, Miller N, Millis R. Patterns of expression of keratin 19 as detected with monoclonal antibodies in human breast tissues and tumours. Int J Cancer. 1985;36(3): 299–306.PubMedGoogle Scholar
  18. 18.
    Wagner KU, Boulanger CA, Henry MD, Sgagias M, Hennighausen L, Smith GH. An adjunct mammary epithelial cell population in parous females: its role in functional adaptation and tissue renewal. Development. 2002;129(6):1377–86.PubMedGoogle Scholar
  19. 19.
    Deome KB, Faulkin Jr LJ, Bern HA, Blair PB. Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res. 1959;19(5):515–20.PubMedGoogle Scholar
  20. 20.
    Van Keymeulen A, Rocha AS, Ousset M, Beck B, Bouvencourt G, Rock J, Sharma N, Dekoninck S, Blanpain C. Distinct stem cells contribute to mammary gland development and maintenance. Nature. 2011;479(7372):189–93.PubMedCrossRefGoogle Scholar
  21. 21.
    Spike BT, Engle DD, Lin JC, Cheung SK, La J, Wahl GM. A mammary stem cell population identified and characterized in late embryogenesis reveals similarities to human breast cancer. Cell Stem Cell. 2012;10(2):183–97. doi:S1934-5909(12)00002-1 [pii] 10.1016/j.stem.2011.12.018.PubMedCrossRefGoogle Scholar
  22. 22.
    Kordon EC, Smith GH. An entire functional mammary gland may comprise the progeny from a single cell. Development. 1998;125(10):1921–30.PubMedGoogle Scholar
  23. 23.
    Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D, Li HI, Eaves CJ. Purification and unique properties of mammary epithelial stem cells. Nature. 2006;439(7079):993–7.PubMedGoogle Scholar
  24. 24.
    Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, Wu L, Lindeman GJ, Visvader JE. Generation of a functional mammary gland from a single stem cell. Nature. 2006;439(7072):84–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Smith GH. Experimental mammary epithelial morphogenesis in an in vivo model: evidence for distinct cellular progenitors of the ductal and lobular phenotype. Breast Cancer Res Treat. 1996;39(1):21–31.PubMedCrossRefGoogle Scholar
  26. 26.
    Tsai YC, Lu Y, Nichols PW, Zlotnikov G, Jones PA, Smith HS. Contiguous patches of normal human mammary epithelium derived from a single stem cell: implications for breast carcinogenesis. Cancer Res. 1996;56(2):402–4.PubMedGoogle Scholar
  27. 27.
    Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray JW, Carey L, Richardson A, Weinberg RA. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci U S A. 2004;101(14):4966–71.PubMedCrossRefGoogle Scholar
  28. 28.
    Eirew P, Stingl J, Raouf A, Turashvili G, Aparicio S, Emerman JT, Eaves CJ. A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability. Nat Med. 2008;14(12):1384–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Lim E, Wu D, Pal B, Bouras T, Asselin-Labat ML, Vaillant F, Yagita H, Lindeman GJ, Smyth GK, Visvader JE. Transcriptome analyses of mouse and human mammary cell subpopulations reveal multiple conserved genes and pathways. Breast Cancer Res. 2010;12(2):R21.PubMedCrossRefGoogle Scholar
  30. 30.
    Stingl J, Eaves CJ, Kuusk U, Emerman JT. Phenotypic and functional characterization in vitro of a multipotent epithelial cell present in the normal adult human breast. Differentiation. 1998;63(4): 201–13.PubMedCrossRefGoogle Scholar
  31. 31.
    Stingl J, Eaves CJ, Zandieh I, Emerman JT. Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res Treat. 2001;67(2):93–109.PubMedCrossRefGoogle Scholar
  32. 32.
    Gudjonsson T, Villadsen R, Nielsen HL, Ronnov-Jessen L, Bissell MJ, Petersen OW. Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties. Genes Dev. 2002;16(6):693–706.PubMedCrossRefGoogle Scholar
  33. 33.
    Clayton H, Titley I, Vivanco M. Growth and differentiation of progenitor/stem cells derived from the human mammary gland. Exp Cell Res. 2004;297(2):444–60.PubMedCrossRefGoogle Scholar
  34. 34.
    Raouf A, Zhao Y, To K, Stingl J, Delaney A, Barbara M, Iscove N, Jones S, McKinney S, Emerman J, Aparicio S, Marra M, Eaves C. Transcriptome analysis of the normal human mammary cell commitment and differentiation process. Cell Stem Cell. 2008;3(1): 109–18.PubMedCrossRefGoogle Scholar
  35. 35.
    Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH, Asselin-Labat ML, Gyorki DE, Ward T, Partanen A, Feleppa F, Huschtscha LI, Thorne HJ, Fox SB, Yan M, French JD, Brown MA, Smyth GK, Visvader JE, Lindeman GJ. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med. 2009;15(8):907–13.PubMedCrossRefGoogle Scholar
  36. 36.
    Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, Schott A, Hayes D, Birnbaum D, Wicha MS, Dontu G. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1(5): 555–67.PubMedCrossRefGoogle Scholar
  37. 37.
    Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, Ronzoni S, Bernard L, Viale G, Pelicci PG, Di Fiore PP. Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell. 2010;140(1):62–73.PubMedCrossRefGoogle Scholar
  38. 38.
    Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, Wicha MS. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003;17(10):1253–70.PubMedCrossRefGoogle Scholar
  39. 39.
    Kao CY, Nomata K, Oakley CS, Welsch CW, Chang CC. Two types of normal human breast epithelial cells derived from reduction mammoplasty: phenotypic characterization and response to SV40 transfection. Carcinogenesis. 1995;16(3):531–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Pechoux C, Gudjonsson T, Ronnov-Jessen L, Bissell MJ, Petersen OW. Human mammary luminal epithelial cells contain progenitors to myoepithelial cells. Dev Biol. 1999;206(1):88–99.PubMedCrossRefGoogle Scholar
  41. 41.
    Keller PJ, Arendt LM, Skibinski A, Logvinenko T, Klebba I, Dong S, Smith AE, Prat A, Perou CM, Gilmore H, Schnitt S, Naber SP, Garlick JA, Kuperwasser C. Defining the cellular precursors to human breast cancer. Proc Natl Acad Sci U S A. 2011;109(8): 2772–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW, Suri P, Wicha MS. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 2006;66(12):6063–71.PubMedCrossRefGoogle Scholar
  43. 43.
    Korkaya H, Paulson A, Charafe-Jauffret E, Ginestier C, Brown M, Dutcher J, Clouthier SG, Wicha MS. Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biol. 2009;7(6):e1000121.PubMedCrossRefGoogle Scholar
  44. 44.
    Korkaya H, Paulson A, Iovino F, Wicha MS. HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene. 2008;27(47):6120–30.PubMedCrossRefGoogle Scholar
  45. 45.
    Liu S, Ginestier C, Charafe-Jauffret E, Foco H, Kleer CG, Merajver SD, Dontu G, Wicha MS. BRCA1 regulates human mammary stem/progenitor cell fate. Proc Natl Acad Sci U S A. 2008;105(5):1680–5.PubMedCrossRefGoogle Scholar
  46. 46.
    Proia TA, Keller PJ, Gupta PB, Klebba I, Jones AD, Sedic M, Gilmore H, Tung N, Naber SP, Schnitt S, Lander ES, Kuperwasser C. Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate. Cell Stem Cell. 2011;8(2):149–63.PubMedCrossRefGoogle Scholar
  47. 47.
    Yalcin-Ozuysal O, Fiche M, Guitierrez M, Wagner KU, Raffoul W, Brisken C. Antagonistic roles of Notch and p63 in controlling mammary epithelial cell fates. Cell Death Differ. 2010;17(10): 1600–12.PubMedCrossRefGoogle Scholar
  48. 48.
    Pasic L, Eisinger-Mathason TS, Velayudhan BT, Moskaluk CA, Brenin DR, Macara IG, Lannigan DA. Sustained activation of the HER1-ERK1/2-RSK signaling pathway controls myoepithelial cell fate in human mammary tissue. Genes Dev. 2011;25(15):1641–53.PubMedCrossRefGoogle Scholar
  49. 49.
    Taylor-Papadimitriou J, Stampfer M, Bartek J, Lewis A, Boshell M, Lane EB, Leigh IM. Keratin expression in human mammary epithelial cells cultured from normal and malignant tissue: relation to in vivo phenotypes and influence of medium. J Cell Sci. 1989;94(Pt 3):403–13.PubMedGoogle Scholar
  50. 50.
    Ethier SP, Mahacek ML, Gullick WJ, Frank TS, Weber BL. Differential isolation of normal luminal mammary epithelial cells and breast cancer cells from primary and metastatic sites using selective media. Cancer Res. 1993;53(3):627–35.PubMedGoogle Scholar
  51. 51.
    Hammond SL, Ham RG, Stampfer MR. Serum-free growth of human mammary epithelial cells: rapid clonal growth in defined medium and extended serial passage with pituitary extract. Proc Natl Acad Sci U S A. 1984;81(17):5435–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Romanov SR, Kozakiewicz BK, Holst CR, Stampfer MR, Haupt LM, Tlsty TD. Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature. 2001;409(6820):633–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Huschtscha LI, Noble JR, Neumann AA, Moy EL, Barry P, Melki JR, Clark SJ, Reddel RR. Loss of p16INK4 expression by methylation is associated with lifespan extension of human mammary epithelial cells. Cancer Res. 1998;58(16):3508–12.PubMedGoogle Scholar
  54. 54.
    Novak P, Jensen TJ, Garbe JC, Stampfer MR, Futscher BW. Stepwise DNA methylation changes are linked to escape from defined proliferation barriers and mammary epithelial cell immortalization. Cancer Res. 2009;69(12):5251–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Lonning PE, Borresen-Dale AL. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98(19):10869–74.PubMedCrossRefGoogle Scholar
  56. 56.
    Rakha EA, Ellis IO. Triple-negative/basal-like breast cancer: review. Pathology. 2009;41(1):40–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, He X, Perou CM. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 2010;12(5):R68.PubMedCrossRefGoogle Scholar
  58. 58.
    Polyak K. Breast cancer: origins and evolution. J Clin Invest. 2007;117(11):3155–63.PubMedCrossRefGoogle Scholar
  59. 59.
    Molyneux G, Geyer FC, Magnay FA, McCarthy A, Kendrick H, Natrajan R, Mackay A, Grigoriadis A, Tutt A, Ashworth A, Reis-Filho JS, Smalley MJ. BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell. 2010;7(3):403–17.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media New York 2013

Authors and Affiliations

  • Patricia J. Keller
    • 1
  • Lisa M. Arendt
    • 2
  • Charlotte Kuperwasser
    • 3
  1. 1.Anatomy and Cellular Biology and Molecular Oncology Research InstituteTufts University School of Medicine and Tufts Medical CenterBostonUSA
  2. 2.Department of AnatomyBostonUSA
  3. 3.Anatomy and Cellular Biology, Molecular Oncology Research InstituteTufts University School of MedicineBostonUSA

Personalised recommendations