Skip to main content

Neural Differentiation from Pluripotent Stem Cells

  • Chapter
  • First Online:
Stem Cells Handbook

Abstract

Technical advances have made it possible to derive pluripotent stem cells (PSCs) from many mammalian species and further differentiate PSCs to multiple cellular lineages. Leveraging the progress made in understanding how different cell types differentiate during mammalian development with the power of PSCs provides an opportunity to differentiate pluripotent cells to nearly any differentiated cell type in vitro. A large database of knowledge is now available on the generation of central and peripheral nervous system neurons and glia from PSCs. The potential to generate such a diverse array of neural cell types offers great promise for the development of cellular and tissue replacement therapies to treat many neurodegenerative disorders. However, because the nervous system contains so many different cell types, much work needs to be performed to generate the many neural cells that are still inaccessible by in vitro differentiation. The rate at which researchers are accumulating information about the mechanisms underlying neural development and translating this information to direct differentiation of PSCs suggests it may soon be possible to generate most neural cell types in culture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hemmati-Brivanlou A, Melton D. Vertebrate embryonic cells will become nerve cells unless told otherwise. Cell. 1997;88:13–7.

    Article  PubMed  CAS  Google Scholar 

  2. Okabe S, Forsberg-Nilsson K, Spiro AC, Segal M, McKay RDG. Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech Dev. 1996;59:89–102.

    Article  PubMed  CAS  Google Scholar 

  3. Zhang S-C, Wernig M, Duncan ID, Brustle O, Thomson O. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol. 2001;19:1129–33.

    Article  PubMed  CAS  Google Scholar 

  4. Ying Q-L, Stavridis M, Griffiths D, Li M, Smith A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol. 2003;21:183–6.

    Article  PubMed  CAS  Google Scholar 

  5. Chambers SM, Qi Y, Mica Y, Lee G, Zhang X-J, Niu L, Bilsland J, Cao L, Stevens E, Whiting P, et al. Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nat Biotechnol. 2012;30(7):715–20. doi:10.1038/nbt.2249.

    Article  PubMed  CAS  Google Scholar 

  6. Simeone AD, Arcioni L, Andrews PW, Boncinelli E, Mavilio F. Sequential activation of HOX2 homeobox genes by retinoic acid in human embryonal carcinoma cells. Nature. 1990;346:763–6.

    Article  PubMed  CAS  Google Scholar 

  7. Renoncourt Y, Carroll P, Filippi P, Arce V, Alonse S. Neurons derived in vitro from ES cells express homeoproteins characteristic of motoneurons and interneurons. Mech Dev. 1998;79:185–97.

    Article  PubMed  CAS  Google Scholar 

  8. Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol. 1985;87:27–45.

    PubMed  CAS  Google Scholar 

  9. Bain G, Kitchens D, Yao M, Huettner JE, Gottlieb DA. Embryonic stem cells express neuronal properties in vitro. Dev Biol. 1995;168:342–57.

    Article  PubMed  CAS  Google Scholar 

  10. Strubing C, Ahnert-Hilger G, Shan J, Wiedenmann B, Hescheler J, Wobus AM. Differentiation of pluripotent embryonic stem cells into neuronal lineages in vitro gives rise to mature inhibitory and excitatory neurons. Mech Dev. 1995;53:275–87.

    Article  PubMed  CAS  Google Scholar 

  11. Finley MFA, Kulkarni N, Huettner JE. Synapse formation and establishment of neuronal polarity by P19 embryonic carcinoma cells and embryonic stem cells. J Neurosci. 1996;16:1056–65.

    PubMed  CAS  Google Scholar 

  12. Fraichard A, Chassande O, Bilbaut G, Dehay G, Savatier P, Samarut J. In vitro differentiation of embryonic stem cells into glial cells and functional neurons. J Cell Sci. 1995;108:3181–8.

    PubMed  CAS  Google Scholar 

  13. Gajovic S, St-Onge L, Yokota Y, Gruss P. Retinoic acid mediates Pax6 expression during in vitro differentiation of embryonic stem cells. Differentiation. 1997;62:187–92.

    PubMed  CAS  Google Scholar 

  14. Angelov DN, Arnhold S, Andressen C, Grabsch H, Puschmann M, Hescheler J, Addicks K. Temporospatial relationships between macroglia and microglia during in vitro differentiation of murine stem cells. Dev Neurosci. 1997;20:42–51.

    Article  Google Scholar 

  15. Bain G, Ray WJ, Yao M, Gottlieb DI. Retinoic acid promotes neural and repressed mesodermal gene expression in mouse embryonic stem cells in culture. Biochem Biophys Res Commun. 1996;223: 691–4.

    Article  PubMed  CAS  Google Scholar 

  16. Okada Y, Shimazaki T, Sobue G, Okano H. Retinoic-acid-concentration-dependent acquisition of neural cell identity during in vitro differentiation of mouse embryonic stem cells. Dev Biol. 2004;275:124–42.

    Article  PubMed  CAS  Google Scholar 

  17. Mujtaba T, Piper DR, Kalyani A, Groves AK, Lucero MT, Rao MS. Lineage-restricted neural precursors can be isolated from both the mouse neural tube and cultured ES cells. Dev Biol. 1999;214: 113–27.

    Article  PubMed  CAS  Google Scholar 

  18. O’Leary DDM, Sahara S. Genetic regulation of arealization of the neocortex. Curr Opin Neurobiol. 2008;18:90–100.

    Article  PubMed  Google Scholar 

  19. Watanabe K, Kamya D, Nishiyama A, Katayama T, Nozaki S, Kawasaki H, Watanabe Y, Mizuseki K, Sasai Y. Directed differentiation of telencephalic precursors from embryonic stem cells. Nat Neurosci. 2005;8:288–96.

    Article  PubMed  CAS  Google Scholar 

  20. Gunhaga L, Marklund M, Sjodal M, Hsieh JC, Jessell TM, Edlund T. Specification of dorsal telencephalic character by sequential Wnt and FGF signaling. Nat Neurosci. 2003;6:701–7.

    Article  PubMed  CAS  Google Scholar 

  21. Gaspard N, Bouschet T, Hourez R, Dimidschstein J, Naeije G, van den Ameele J, Espuny-Camacho I, Herpoel A, Passante L, Schiffmann SN, et al. An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature. 2008;455:351–7.

    Article  PubMed  CAS  Google Scholar 

  22. Cambray S, Arber C, Little G, Doubalis AG, de Paola V, Ungless MA, Li M, Rodriguez TA. Activin induces cortical interneuron identity and differentiation in embryonic stem cell-derived telencephalic neural precursors. Nat Commun. 2012;3:841.

    Article  PubMed  Google Scholar 

  23. Ye W, Shimamura K, Rubenstein JLR, Hynes MA, Rosenthal A. FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell. 1998;93:755–66.

    Article  PubMed  CAS  Google Scholar 

  24. Kalir HH, Mytilneou C. Ascorbic acid in mesencephalic cultures: effects on dopaminergic neuron development. J Neurochem. 1991;57:458–64.

    Article  PubMed  CAS  Google Scholar 

  25. Lee S-H, Lumelsky N, Studer L, Auerbach JM, McKay RD. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol. 2000;18:675–9.

    Article  PubMed  CAS  Google Scholar 

  26. Kawasaki H, Mizuseki K, Hishikawa S, Kaneko S, Kuwana Y, Nakanishi S, Nishiwawa S-I, Sasai Y. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron. 2000;28:31–40.

    Article  PubMed  CAS  Google Scholar 

  27. Zeng X, Cai J, Chen J, Luo Y, You ZB, Fotter E, Harvey B, Miura T, Backman C, Chen GJ, et al. Dopaminergic differentiation of human embryonic stem cells. Stem Cells. 2004;22:925–40.

    Article  PubMed  CAS  Google Scholar 

  28. Perrier AL, Tabar V, Barberi T, Rubio ME, Bruses J, Topf N, Harrison NL, Studer L. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci U S A. 2004;101:12543–8.

    Article  PubMed  CAS  Google Scholar 

  29. Yan YY, Yang D, Zarnowska ED, Du Z, Werbel B, Valliere C, Pearce RA, Thomson JA, Zhang S-C. Directed differentiation of dopaminergic neuronal subtypes from human embryonic. Stem Cells. 2005;23(6):781–90.

    Article  PubMed  CAS  Google Scholar 

  30. Swistowksi A, Peng J, Han Y, Swistowski AM, Rao MS, Zeng X. Xeno-free defined conditions for culture of human embryonic stem cells, neural stem cells, and dopaminergic neurons derived from them. PLoS One. 2009;14:e6233.

    Article  Google Scholar 

  31. Swistowski A, Peng J, Liu Q, Mali P, Rao MS, Cheng L, Zeng X. Efficient generation of functional dopaminergic neurons from human induced pluripotent stem cells under defined conditions. Stem Cells. 2010;28:1893–904.

    Article  PubMed  CAS  Google Scholar 

  32. Jessell TM. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet. 2000;1:20–9.

    Article  PubMed  CAS  Google Scholar 

  33. Briscoe J, Ericson J. Specification of neuronal fates in the ventral neural tube. Curr Opin Neurobiol. 2001;11:43–9.

    Article  PubMed  CAS  Google Scholar 

  34. Shirasaki R, Pfaff SL. Transcriptional codes and the control of neuronal identity. Annu Rev Neurosci. 2002;25:251–81.

    Article  PubMed  CAS  Google Scholar 

  35. Wichterle H, Lieberam I, Porter JA, Jessell TM. Directed differentiation of embryonic stem cells into motor neurons. Cell. 2002;110:385–97.

    Article  PubMed  CAS  Google Scholar 

  36. Liu JP, Laufer E, Jessell TM. Assigning the positional identity of spinal motor neurons: rostrocaudal patterning of Hox-c expression by FGFs, Gdf11, and retinoids. Neuron. 2001;32:997–1012.

    Article  PubMed  CAS  Google Scholar 

  37. Li XJ, Du ZW, Zarnowska ED, Pankratz M, Hansen LO, Pearce RA, Zhang SC. Specification of motoneurons from human embryonic stem cells. Nat Biotechnol. 2005;23:215–21.

    Article  PubMed  Google Scholar 

  38. Roy NS, Nakano T, Xuing L, Kang J, NEdergaard M, Goldman SA. Enhancer-specified GFP-based FACS purification of human spinal motor neurons from embryonic stem cells. Exp Neurol. 2005;196:224–34.

    Article  CAS  Google Scholar 

  39. Smith JR, Vallier L, Lupo G, Alexander M, Harris WA, Pedersen RA. Inhibition of Activin/Nodal signaling promotes specification of human embryonic stem cells into neuroectoderm. Dev Biol. 2008;313:107–17.

    Article  PubMed  CAS  Google Scholar 

  40. Patani R, Compston A, Puddifoot CA, Wyllie DJA, Hardingham GE, Allen ND, Chandran S. Activin/Nodal inhibition alone accelerates highly efficient neural conversion from human embryonic stem cells and imposes a caudal positional identity. PLoS One. 2009;4:e7327.

    Article  PubMed  Google Scholar 

  41. Patani R, Hollins AJ, Wishart TM, Puddifoot CA, Alvarez S, de Lera AR, Wyllie DJA, Compston DAS, Pedersen RA, Gillingwater TH, et al. Retinoid-independent motor neurogenesis from human embryonic stem cells reveals a medial columnar ground state. Nat Commun. 2011;2:214.

    Article  PubMed  CAS  Google Scholar 

  42. Hester ME, Murtha MJ, Song S, Rao M, Miranda CJ, Meyer K, Tian J, Boulting G, Schaffer DV, Zhu MX, et al. Rapid and efficient generation of functional motor neurons from human pluripotent stem cells using gene delivered transcription factor codes. Mol Ther. 2011;19:1905–12.

    Article  PubMed  CAS  Google Scholar 

  43. Rao MS, Noble M, Mayer-Proschel M. A tripotential glial precursor cell is present in the developing spinal cord. Proc Natl Acad Sci U S A. 1998;95:3996–4001.

    Article  PubMed  CAS  Google Scholar 

  44. Raff MC, Miller RH, Noble M. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature. 1983;303:390–6.

    Article  PubMed  CAS  Google Scholar 

  45. Grigori N, Proschel C, Noble M, Mayer-Proschel M. The tripotential glial restricted precursor (GRP) cell and glial development in the spinal cord: generation of bipotential oligodendrocyte-type-2 astrocyte progenitor cells and dorsal-ventral differences in GFP cell function. J Neurosci. 2002;22:248–56.

    Google Scholar 

  46. Guo F, Ma J, McCauley E, Bannerman P, Pleasure D. Early postnatal proteolipid promoter-expressing progenitors produce multilineage cells in vivo. J Neurosci. 2009;29:7256–70.

    Article  PubMed  CAS  Google Scholar 

  47. Haas C, Neuhuber B, Yamagami T, Rao M, Fischer I. Phenotypic analysis of astrocytes derived from glial restricted precursors and their impact on axon regeneration. Exp Neurol. 2012;233:717–32.

    Article  PubMed  CAS  Google Scholar 

  48. D’Alessandro JS, Yetz-Aldape J, Wang EA. Bone morphogenetic proteins induce differentiation in astrocyte lineage cells. Growth Factors. 1994;11:53–69.

    Article  PubMed  Google Scholar 

  49. Ochiai W, Yanagisawa M, Takiwaza T, Nakashima K, Taga T. Astrocyte differentiation of fetal neuroepithelial cells involving cardiotrophin-1-induced activation of STAT3. Cytokine. 2001;14: 264–71.

    Article  PubMed  CAS  Google Scholar 

  50. Uemura A, Takizawa T, Ochiai W, Yanagisawa M, Nakashima K, Taga T. Cardiotrophin-like cytokine induces astrocyte differentiation of fetal neuroepithelial cells via activation of STAT3. Cytokine. 2002;18:1–7.

    Article  PubMed  CAS  Google Scholar 

  51. Tanigaki K, Nogaki T, Takahashi J, Tashiro K, Kurooka H, Honjo T. Notch1 and Notch 3 instructively restrict bFGF-responsive multipotent neural progenitor cells to an astroglial fate. Neuron. 2001;29:45–55.

    Article  PubMed  CAS  Google Scholar 

  52. Krencik R, Zhang S-C. Directed differentiation of functional astroglial subtypes from human pluripotent stem cells. Nat Protoc. 2011;6:1710–7.

    Article  PubMed  CAS  Google Scholar 

  53. Emdad L, D’Souza SL, Kothari HP, Qadeer ZA, Germano IM. Efficient differentiation of human embryonic and induced pluripotent stem cells into functional astrocytes. Stem Cells Dev. 2012;21:404–10.

    Article  PubMed  CAS  Google Scholar 

  54. Lu QR, Yuk D, Alberta JA, Zhu Z, Pawlitzky I, Chan J, McMahon AP, Stiles CD, Rowitch DH. Sonic hedgehog-regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron. 2000;25:317–29.

    Article  PubMed  CAS  Google Scholar 

  55. Noble M, Murray K, Stroobant P, Waterfield M, Riddle P. Platelet-derived growth factor promotes division and motility, and inhibits premature differentiation, of the oligodendrocyte-type-2 astrocyte progenitor cell. Nature. 1988;333:560–2.

    Article  PubMed  CAS  Google Scholar 

  56. Richardson WD, Pringle N, Mosley MJ, Westermark B, Dubois-Dalcq M. A role for platelet-derived growth factor in normal gliogenesis in the central nervous system. Cell. 1988;53:309–19.

    Article  PubMed  CAS  Google Scholar 

  57. Raff MC, Lillier LE, Richardson WD, Burne JF, Noble MD. Platelet-derived growth factor from astrocytes drives the clock that times oligodendrocyte development in culture. Nature. 1988;333:562–5.

    Article  PubMed  CAS  Google Scholar 

  58. Barres BA, Lazar MA, Raff MC. A novel role for thyroid hormone, glucocorticoids and retinoic acid in timing oligodendrocyte development. Development. 1994;120:1097–108.

    PubMed  CAS  Google Scholar 

  59. Brustle O, Jones KN, Learish RD, Karram K, Choudhary K, Wiestler OD, Duncan ID, McKay RDG. Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science. 1999;285:754–6.

    Article  PubMed  CAS  Google Scholar 

  60. Liu S, Yun Q, Stewart TJ, Howard MJ, Chakrabortty S, Holekamp TF, McDonald JW. Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc Natl Acad Sci U S A. 2000;97(11):6126–31.

    Article  PubMed  CAS  Google Scholar 

  61. Billon N, Jolicoeur C, Raff M. Generation and characterization of oligodendrocytes from lineage-selectable embryonic stem cells in vitro. Methods Mol Biol. 2006;330:15–32.

    PubMed  CAS  Google Scholar 

  62. Nistor GI, Totouu MO, Haque N, Carpenter MK, Keirstead HS. Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia. 2005;49:385–96.

    Article  PubMed  Google Scholar 

  63. Izrael M, Zhang P, Kaufman R, Shinder V, Ella R, Amit M, Itskovitz-Eldor J, Chebath J, Revel M. Human oligodendrocytes derived from embryonic stem cells: effect of noggin on phenotypic differentiation in vitro and on myelination in vivo. Mol Cell Neurosci. 2007;34:310–23.

    Article  PubMed  CAS  Google Scholar 

  64. Hu B-Y, Du Z-W, Zhang S-C. Differentiation of human oligodendrocytes from pluripotent stem cells. Nat Protoc. 2009;4:1614–22.

    Article  PubMed  CAS  Google Scholar 

  65. Anderson DJ. Cellular and molecular biology of neural crest cell lineage determination. Trends Genet. 1997;13:276–80.

    Article  PubMed  CAS  Google Scholar 

  66. Lee G, Kim H, Elkabetz Y, Al Shamy G, Panagiotakos G, Barberi T, Tabar B, Studer L. Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat Biotechnol. 2007;12:1468–75.

    Article  Google Scholar 

  67. Liu Q, Spusta SC, Mi R, Lassiter RNT, Stark MR, Hoke A, Rao MS, Zeng X. Human neural crest stem cells derived from human ESCs and induced pluripotent stem cells: induction, maintenance, and differentiation into functional Schwann cells. Stem Cells Transl Med. 2012;1:266–78.

    Article  PubMed  CAS  Google Scholar 

  68. Curchoe CL, Maurer J, McKeown SJ, Cattarossi G, Cimadamore F, Nilbratt M, Snyder EY, Bronner-Fraser M, Terskikh AV. Early acquisition of neural crest competence during hESCs neuralization. PLoS One. 2010;5(11):e13890.

    Article  PubMed  Google Scholar 

  69. Cimadamore F, Fishwick K, Giusto E, Gnedevea K, Cattarossi G, Miler A, Pluchino S, Brill LM, Bronner-Fraser M, Terskikh AV. Human ESC-derived neural crest model reveals a key role for SOX2 in sensory neurogenesis. Cell Stem Cell. 2011;8: 538–51.

    Article  PubMed  CAS  Google Scholar 

  70. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009;27:275–80.

    Article  PubMed  CAS  Google Scholar 

  71. Takaki M, Nakayama S, Misawa H, Nakagawa T, Kuniyasu H. In vitro formation of enteric neural network structure in a gut-like organ differentiated from mouse embryonic stem cells. Stem Cells. 2006;24:1414–22.

    Article  PubMed  CAS  Google Scholar 

  72. Kawasaki H, Suemori H, Mizuseki K, Watanabe K, Urano F, Ichinose H, Haruta M, Takahashi M, Yoshikawa K, Nishikawa S, et al. Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proc Natl Acad Sci U S A. 2002;99:1580–5.

    Article  PubMed  CAS  Google Scholar 

  73. Kllimanskaya I, Hipp J, Rezai KA, West M, Atala A, Lanza R. Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells. 2004;64:217–45.

    Google Scholar 

  74. Ikeda H, Osakada F, Watanabe K, Mizuseki K, Haraguchi T, Miyoshi H, Kamiya D, Honda Y, Sasai N, Yoshimura N, et al. Generation of Rx+/Pax6+ neural retinal precursors from embryonic stem cells. Proc Natl Acad Sci U S A. 2005;102:11331–6.

    Article  PubMed  CAS  Google Scholar 

  75. Oskada F, Ikeda H, Mandai M, Wataya T, Watanabe K, Yoshimura N, Akaike A, Sasai Y, Takahashi M. Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat Biotechnol. 2008;26:215–24.

    Article  Google Scholar 

  76. Nakano T, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, Saito K, Yonemura S, Eiraku M, Sasai Y. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell. 2012;10:771–85.

    Article  PubMed  CAS  Google Scholar 

  77. Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, Sekiguchi K, Adachi T, Sasai Y. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature. 2011;472:51–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Anastasia Efthymiou for comments on draft versions of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra Rao M.B.B.S., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science + Business Media New York

About this chapter

Cite this chapter

Rao, M., Malik, N. (2013). Neural Differentiation from Pluripotent Stem Cells. In: Sell, S. (eds) Stem Cells Handbook. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-7696-2_11

Download citation

Publish with us

Policies and ethics