Skip to main content

Narrow Escape in \({\mathbb{R}}^{2}\)

  • Chapter
  • First Online:
Brownian Dynamics at Boundaries and Interfaces

Part of the book series: Applied Mathematical Sciences ((AMS,volume 186))

  • 2110 Accesses

Abstract

The narrow escape problem in diffusion theory, which goes back to Lord Rayleigh (in the context of the theory of sound), is to calculate the mean first passage time of Brownian motion to a small absorbing window on the otherwise reflecting boundary of a bounded domain (see Fig. 7.1). The MFPT in this problem is also called the narrow escape time (NET).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Aboud, S., M. Saraniti, and R.S. Eisenberg (2003), “Issues in modeling ion transport in biological channels: self-consistent particle-based simulations,” Journal of Computational Electronics, 2, 239–243.

    Article  Google Scholar 

  • Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts, and J.D. Watson (1994), Molecular Biology of the Cell, Garland, NY.

    Google Scholar 

  • Belopolskaya, Y.I. and Y.L. Dalecky (1990), Stochastic Equations and Differential Geometry, Kluwer, Dordrecht.

    Book  MATH  Google Scholar 

  • Bénichou, O. and R. Voituriez (2008), “Narrow-escape time problem: Time needed for a particle to exit a confining domain through a small window,” Phys. Rev. Lett., 100, 168105.

    Article  Google Scholar 

  • Berezhkovskii, A.M., A.V. Barzykin, and V.Yu. Zitserman (2009), “Escape from cavity through narrow tunnel,” J. Chem. Phys., 130, 245104.

    Article  Google Scholar 

  • Biess, A., E. Korkotian, D. Holcman (2007), “Diffusion in a dendritic spine: the role of geometry,” Phys. Rev. E, Stat. Nonlin. Soft Matter Phys., 76 (1), 021922.

    Google Scholar 

  • Boda, D., W. Nonner, M. Valisko, D. Henderson, R.S. Eisenberg, and D. Gillespie (2007), “Steric selectivity in na channels crising from protein polarization and mobile side chains,” Biophysical Journal, 93, 1960–1980.

    Article  Google Scholar 

  • Borgdorff, A.J. and D. Choquet (2002, “Regulation of AMPA receptor lateral movements,” Nature 417, pp. 649–653).

    Google Scholar 

  • Bourne, J.N., K.M. Harris (2008), “Balancing structure and function at hippocampal dendritic spines,” Annu. Rev. Neurosci., 31, 47–67.

    Article  Google Scholar 

  • Burger, M., R.S. Eisenberg, and H.W. Engl (2007), “Inverse problems related to ion channel selectivity,” SIAM J. Appl. Math., 67 (4), 960–989.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, D.P., J. Lear, and R.S. Eisenberg (1997), “Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel,” Biophysical Journal, 72, 97–116.

    Article  Google Scholar 

  • Chen, D.P., L. Xu, A. Tripathy, G. Meissner, and R.S. Eisenberg (1999), “Selectivity and permeation in calcium release channel of cardiac muscle: alkali metal ions,” Biophys. J., 76, 1346–1366.

    Article  Google Scholar 

  • Cheviakov, A., M.J. Ward, and R. Straube (2010), “An asymptotic analysis of the mean first passage time for narrow escape problems: Part II: The sphere,” SIAM Multiscale Modeling and Simulation, 8 (3), 836–870.

    Article  MathSciNet  MATH  Google Scholar 

  • Choquet, D. (2010), “Fast AMPAR trafficking for a high-frequency synaptic transmission,” Eur. J. Neurosci. 32, pp. 250–260.

    Google Scholar 

  • Choquet, D. and A.J. Borgdorff (2002), “Regulation of AMPA receptor lateral movements,” Nature, 417, 649–653.

    Article  Google Scholar 

  • Coombs, D., R. Straube, and M. Ward (2009), “Diffusion on a sphere with localized traps: Mean first passage time, eigenvalue asymptotics, and Fekete points,” SIAM J. Appl. Math., 70 (1), 302–332.

    Article  MathSciNet  MATH  Google Scholar 

  • Edidin, M., S.C. Kuo and M.P. Sheetz (1991), “Lateral movements of membrane glycoproteins restricted by dynamic cytoplasmic barriers,” Science 254, pp. 1379–1382.

    Google Scholar 

  • Eisenberg, R.S. and D.P. Chen (1993), “Charges, currents, and potentials in ionic channels of one conformation,” Biophysical Journal, 64, 1405–1421.

    Article  Google Scholar 

  • Eisinger, J., J. Flores and W.P. Petersen (1986), “A milling crowd model for local and long-range obstructed lateral diffusion. Mobility of excimeric probes in the membrane of intact erythrocytes,” Biophys J. 49, pp. 987–1001.

    Google Scholar 

  • Fabrikant, V.I. (1989), Applications of Potential Theory in Mechanics, Kluwer, Dordrecht.

    MATH  Google Scholar 

  • Fabrikant, V.I. (1991), Mixed Boundary Value Problems of Potential Theory and Their Applications in Engineering, Kluwer, Dordrecht.

    MATH  Google Scholar 

  • Gandolfi, A., A. Gerardi, and F. Marchetti (1985), “Diffusion-controlled reactions in two dimensions,” Acta Applicandae Mathematicae, 4, 139–159.

    Article  MathSciNet  MATH  Google Scholar 

  • Garabedian, P.R. (1964), Partial Differential Equations, Wiley, NY.

    MATH  Google Scholar 

  • Graf, P., M.G. Kurnikova, R.D. Coalson, and A. Nitzan (2004), “Comparison of dynamic lattice Monte Carlo simulations and the dielectric self-energy Poisson-Nernst-Planck continuum theory for model ion channels,” J. Phys. Chem. B, 108, 2006–2015.

    Article  Google Scholar 

  • Grigoriev, I.V., Y.A. Makhnovskii, A.M. Berezhkovskii, and V.Y. Zitserman (2002), “Kinetics of escape through a small hole,” J. Chem. Phys., 116, (22), 9574–9577.

    Article  Google Scholar 

  • Hänggi, P., P. Talkner, and M. Borkovec (1990), “50 years after Kramers,” Rev. Mod. Phys., 62, 251–341.

    Article  Google Scholar 

  • Harris, K.M., J.K. Stevens (1988), “Dendritic spines of rat cerebellar Purkinje cells: serial electron microscopy with reference to their biophysical characteristics,” J. Neurosci., 12, 4455–4469.

    Google Scholar 

  • Hille, B. (2001), Ionic Channels of Excitable Membranes, Sinauer Associates Inc. Sunderland, 3rd edition.

    Google Scholar 

  • Hille, E. (1976), Analytic Function Theory, volume 1. Chelsea Publishing Company, NY.

    Google Scholar 

  • Holcman, D., A. Triller (2006), “Modeling synaptic dynamics and receptor trafficking,” Biophys. J., 91 (7), 2405–2415.

    Article  Google Scholar 

  • Holcman, D. and Z. Schuss (2004), “Escape through a small opening: receptor trafficking in a synaptic membrane,” J. Stat. Phys., 117 (5/6), 191–230.

    MathSciNet  Google Scholar 

  • Holcman, D. and Z. Schuss (2008a), “Diffusion escape through a cluster of small absorbing windows,” J. Phys. A: Math. and Theoretical, 41, 155001.

    Article  MathSciNet  Google Scholar 

  • Holcman, D. and Z. Schuss (2008b), “Diffusion through a cluster of small windows and flux regulation in microdomains,” Phys. Lett. A, 372, 3768–3772.

    Article  MATH  Google Scholar 

  • Holcman, D. and Z. Schuss (2011), “Diffusion laws in dendritic spines,” The Journal of Mathematical Neuroscience, 1, 10.

    Article  MathSciNet  Google Scholar 

  • Holcman, D. and Z. Schuss (2012), “Brownian motion in dire straits,” SIAM. J. on Multiscale Modeling and Simulation,

    Google Scholar 

  • Holcman, D., N. Hoze, Z. Schuss (2011), “Narrow escape through a funnel and effective diffusion on a crowded membrane,” Phys. Rev. E, 84, 021906.

    Article  Google Scholar 

  • Holcman, D., I. Kupka (2010), “Some questions in computational cellular biology,” Journal of Fixed Point Theory and Applications, 7 (1), 67–83.

    Article  MathSciNet  MATH  Google Scholar 

  • Holcman, D., E. Korkotian, and M. Segal (2005), “Calcium dynamics in dendritic spines, modeling and experiments,” Cell Calcium, 37, 467–475.

    Article  Google Scholar 

  • Hotulainen, P., C.C. Hoogenraad (2010), “Actin in dendritic spines: connecting dynamics to function,” J. Cell Biol., 189 (4), 619–629.

    Article  Google Scholar 

  • Huang, Q., R. Opitz, E.W. Knapp, A. Herrmann (2002), “Protonation and stability of the globular domain of influenza virus hemagglutinin,” Biophys J., 82 (2), 1050–1058.

    Article  Google Scholar 

  • Im, B., S. Seefeld, and B. Roux (2000), “A grand canonical Monte-Carlo-Brownian dynamics algorithm for simulating ion channel,” Biophysical Journal, 79, 788–801.

    Article  Google Scholar 

  • John, F. Partial Differential Equations, Applied Mathematical Sciences, v. 1,. Springer, NY, 4th edition 1982.

    Google Scholar 

  • Kandel, E.R., J.H. Schwartz, T.M. Jessell (2000), Principles of Neural Science, McGraw-Hill, New York, 4th edition.

    Google Scholar 

  • Kolokolnikov, T., M. Titcombe and M.J. Ward (2005), “Optimizing the fundamental Neumann eigenvalue for the Laplacian in a domain with small traps,” European J. Appl. Math., 16, 161–200.

    Article  MathSciNet  MATH  Google Scholar 

  • Korkotian, E., D. Holcman and M. Segal (2004), “Dynamic regulation of spine-dendrite coupling in cultured hippocampal neurons,” Euro. J. of Neuroscience, 20 (10), 2649–2663.

    Article  Google Scholar 

  • Kusumi, A., C. Nakada, K. Ritchie, K. Murase, K. Suzuki, H. Murakoshi, R.S. Kasai, J. Kondo, T. Fujiwara (2005), “Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules,” Ann. Rev. Biophys. Biomol. Struct. 34, pp. 351–378.

    Google Scholar 

  • Kusumi, A., Y. Sako and M. Yamamoto (1993), “Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells,” Biophys J. 65, pp. 2021–2040.

    Google Scholar 

  • Lieber, A., A. Leis, A. Kushmaro, A. Minsky, O. Medalia (2009), “Chromatin organization and radio resistance in the bacterium gemmata obscuriglobus,” J. Bacteriol., 191 (5), 1439–1445.

    Article  Google Scholar 

  • MacKinnon, R. (2003), “Potassium channels and the atomic basis of selective ion conduction,” Nobel Lecture 2003, http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2003/mackinnon-lecture.html.

  • Majewska, A., E. Brown, J. Ross, R. Yuste (2000b), “Mechanisms of calcium decay kinetics in hippocampal spines: role of spine calcium pumps and calcium diffusion through the spine neck in biochemical compartmentalization,” J. Neurosci., 20 (5), 1722–1734.

    Google Scholar 

  • McKean, H.P., Jr (1969), Stochastic Integrals, Academic Press, NY.

    MATH  Google Scholar 

  • Newpher, T.M., M.D. Ehlers (2009), “Spine microdomains for postsynaptic signaling and plasticity,” Trends Cell Biol., 5, 218–227.

    Article  Google Scholar 

  • Rayleigh, J.W.S. (1945), The Theory of Sound, volume 2. Dover, NY, 2nd edition.

    Google Scholar 

  • Renner, M., D. Choquet and A. Triller (2009), “Control of the postsynaptic membrane viscosity,” J. Neurosci. 29 (9), pp. 2926–2637.

    Google Scholar 

  • Saxton, M.J. (1995), “Single-particle tracking: effects of corrals,” Biophys. J. 69, pp. 389–398.

    Google Scholar 

  • Saxton, M.J. and K. Jacobson (1997), “Single-particle tracking: applications to membrane dynamics,” Annu. Rev. Biophys. Biomol. Struct. 26, pp. 373–399.

    Google Scholar 

  • Schuss, Z. (1980), Theory and Applications of Stochastic Differential Equations. John Wiley & Sons, NY.

    MATH  Google Scholar 

  • Schuss, Z., A. Singer, and D. Holcman (2007), “The narrow escape problem for diffusion in cellular microdomains,” Proc. Natl. Acad. Sci. USA, 104, 16098–16103.

    Article  Google Scholar 

  • Schuss, Z. (2010b), Theory and Applications of Stochastic Processes, and Analytical Approach, Springer series on Applied Mathematical Sciences 170, NY.

    Google Scholar 

  • Sheetz, M.P. (1993), “Glycoprotein motility and dynamic domains in fluid plasma membranes,” Ann. Rev. Biophys. Biomol. Struct. 22, 417–431.

    Google Scholar 

  • Singer, A., Z. Schuss, D. Holcman, and R.S. Eisenberg (2006a), “Narrow escape, Part I,” J. Stat. Phys., 122 (3), 437–463.

    Article  MathSciNet  MATH  Google Scholar 

  • Singer, A., Z. Schuss, and D. Holcman (2006b), “Narrow escape, Part II: The circular disk,” J. Stat. Phys., 122 (3), 465–489.

    Article  MathSciNet  MATH  Google Scholar 

  • Singer, A., Z. Schuss, and D. Holcman (2006c), “Narrow escape, Part III: Non-smooth domains and Riemann surfaces,” J. Stat. Phys., 122 (3), 491–509.

    Article  MathSciNet  MATH  Google Scholar 

  • Singer, A. and Z. Schuss (2006), “Activation through a narrow opening,” Phys. Rev. E (Rapid Comm.), 74, 020103(R).

    Google Scholar 

  • Sneddon, I.N. (1985), Elements of Partial Differential Equations, McGraw-Hill International Editions (Mathematics Series).

    Google Scholar 

  • Stroock, D.W. and S.R.S. Varadhan (1979), Multidimensional Diffusion Processes, Springer-Verlag, NY, Grundlehren der Mathematischen Wissenschaften 233.

    MATH  Google Scholar 

  • Suzuki, K. and M.P. Sheetz (2001), “Binding of cross-linked glycosylphosphatidyl-inositol-anchored proteins to discrete actin-associated sites and cholesterol-dependent domains,” Biophys. J. 81, pp. 2181–2189.

    Google Scholar 

  • Svoboda, K., D.W. Tank, W. Denk (1996), “Direct measurement of coupling between dendritic spines and shafts,” Science, 272 (5262), 716–719.

    Article  Google Scholar 

  • Tardin, C., L. Cognet, C. Bats, B. Lounis, and D. Choquet (2003), “Direct imaging of lateral movements of AMPA receptors inside synapses,” Embo J. 22, pp. 4656–4665.

    Google Scholar 

  • Triller, A. and D. Choquet (2003), “The role of receptor diffusion in the organization of the postsynaptic membrane,” Nat. Rev. Neurosci., 4, 1251–1265.

    Google Scholar 

  • Ward, M.J. and E. Van De Velde (1992), “The onset of thermal runaway in partially insulated or cooled reactors,” IMA J. Appl. Math., 48, 53–85.

    Article  MathSciNet  MATH  Google Scholar 

  • Ward, M.J., W.D. Henshaw, and J.B. Keller (1993), “Summing logarithmic expansions for singularly perturbed eigenvalue problems,” SIAM J. Appl. Math., 53, 799–828.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Author

About this chapter

Cite this chapter

Schuss, Z. (2013). Narrow Escape in \({\mathbb{R}}^{2}\) . In: Brownian Dynamics at Boundaries and Interfaces. Applied Mathematical Sciences, vol 186. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7687-0_7

Download citation

Publish with us

Policies and ethics