Skip to main content

Carbon Nanotubes Deagglomeration in Aqueous Solutions

  • Conference paper
  • First Online:
Book cover Nanomaterials Imaging Techniques, Surface Studies, and Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 146))

Abstract

Deagglomeration of the carbon nanotube bundles were performed in an aqueous solutions of different chemical composition using ultrasound, cavitation, and rotating homogenizing treatment. Found that the degree of dispersion on the cavitation principle strongly depends on the concentration of CNTs in the water. Using organic compounds (C6H12O6) increases the efficiency of the dispersion. Ultrasound effect is manifested in the destruction of agglomerates CNTs and size. Processing in a universal homogenizer of water-soluble polymer and ionic surfactant system/CNTs had allowed obtaining highly stable solution with a particle size from 150 to 400 nm. The particle size depends on the concentration of components in the system. Utilizing the CNT/water-soluble polymer/ionic surfactant mixture coupled with homogenizer machine shows the best results in terms of the solution stability, particles size, and their distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58 (London)

    Article  ADS  Google Scholar 

  2. Suryasarathi B, Rupesh AKh, Paula M (2010) Assessing the strengths and weaknesses of various types of pretreatments of carbon nanotubes on the properties of polymer/carbon nanotubes composites: a critical review. Polymer 51:975–993

    Article  Google Scholar 

  3. Du F, Winey KI (2006) Nanotubes in multifunctional polymer nanocomposites. In: Gogotsi Yu (ed.) Nanomaterials Handbook. CRC, Taylor&Francis, Boca Raton, London, pp 565–583

    Google Scholar 

  4. Breuer O, Sundararaj U (2004) Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym Compos 25(6):630–645

    Article  Google Scholar 

  5. Thostenson ET, Ren Z, Chou T-W (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912

    Article  Google Scholar 

  6. Harris PJF (2004) Carbon nanotube composites. Int Mater Rev 49(1):31–43

    Article  Google Scholar 

  7. Yu M, Lourie O, Dyer MJ et al (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640

    Article  ADS  Google Scholar 

  8. Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44(9):1624–1652

    Article  Google Scholar 

  9. Koratkar NA, Suhr J, Joshi A et al (2005) Characterizing energy dissipation in single-walled carbon nanotube polycarbonate composites. Appl Phys Lett 87:063102

    Article  ADS  Google Scholar 

  10. Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high young’s modulus observed for individual carbon nanotubes. Nature 381:678–680

    Article  ADS  Google Scholar 

  11. Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanisms: elasticity, strength and toughness of nanorods and nanotubes. Science 277:1971–1975

    Article  Google Scholar 

  12. Berber S, Kwon Y-K, Tomarnek D (2000) Phys Rev Lett 84(20):4613–4616

    Article  ADS  Google Scholar 

  13. Donnet J, Bansal R, Wang M (1993) Carbon black: science and technology. Marcel Dekker, New York

    Google Scholar 

  14. Garboczi EJ, Snyder KA, Douglas JF, Thorpe MF (1995) Intrinsic viscosity and the electrical polarizability of arbitrarily shaped objects. Phys Rev E 52:819–828

    Google Scholar 

  15. Potschke P, Bhattacharyya AR, Janke A et al (2005) Melt mixing as method to disperse carbon nanotubes into thermoplastic polymers. Fullerenes, Nanotubes, Carbon Nanostruct 13(1):211–224

    Google Scholar 

  16. Lin B, Sundararaj U, Potschke P (2006) Melt mixing of polycarbonate with multi-walled carbon nanotubes in miniature mixers. Macromol Mater Eng 291(3):227–238

    Google Scholar 

  17. Potschke P, Bhattacharyya AR, Janke A (2004) Melt mixing of polycarbonate with multiwalled carbon nanotubes: microscopie studies on the state of dispersion. Eur Polymer J 40(1):137–148

    Google Scholar 

  18. Dondero WE, Gorga RE (2006) Morphological and mechanical properties of carbon nanotube/polymer composites via melt compounding. J Polymer Sci Part B: Polymer Phys 44(5):864–878

    Google Scholar 

  19. Sementsov YuI, Alekseeva TA, Pyatkovsky ML et al (2009) Multiwall carbon nanotubes (CNT) deagglomeration and nanocomposite polymer/CNT production. In: Proceedings of mater. conference hydrogen materials science and chemistry of carbon nanomaterials ICHMS, 25–31 August. Yalta, p 784

    Google Scholar 

  20. Sementsov YuI, Melezhek OV, Prikhod’ko GP, et al (2007) Synthesis, structure, physicochemical properties of nanocarbon materials. In: Physical chemistry on nanomaterials and supramolecular structures, vol 2. Naukova dumka, Kyiv, pp 116–158

    Google Scholar 

  21. Fursikov MF, Tarasov BP (2004) Catalytic synthesis and properties of carbon nanotubes and nanofibers. Int Sci J Alternat Energy Ecology 10:24–40 (in Russian)

    Google Scholar 

  22. Alekseev NI (2006) About morphology of carbon nanotubes growing from the catalyst particles: formulation of the model. Solid State Phys 48(8):1518–1525 (in Russian)

    ADS  Google Scholar 

  23. Tkachev AG, Mishchenko E, Konovalov VF (2007) Catalytic synthesis of carbon nanotubes from gas-phase pyrolysis of hydrocarbons. Russ Nanotechnol 2(7–8):100–108 (in Russian)

    Google Scholar 

  24. Kovalska EA, Kartel NT, Prikhodko GP, Sementsov YuI (2012) Physical and chemical fundamentals of purification methods for carbon nanotubes (review). Chem phys technol surf 3(1):20–44 (in Ukrainian)

    Google Scholar 

  25. Kovalska EO, Prikhodko GP, Sementsov YuI (2012) Deaglomeration of carbon nanotubes in aqueous solutions of variety compounds. In: Proceedings of the international summer school nanotechnology: from fundamental researches to innovations, 26 Aug–2 Sep. Bukovel, Ukraine, pp 63–65 (in Ukrainian)

    Google Scholar 

  26. Hao Y, Qunfeng Z, Fei W et al (2003) Agglomerated CNTs synthesized in a fluidized bed reactor: Agglomerate structure and formation mechanism. Carbon 41:2855–2863

    Google Scholar 

  27. Kovalska EO, Sementsov YuI, Kartel NT, Prikhodko GP (2012) Synthesis of catalysts for growth of carbon nanotubes and testing their effectiveness. Chem Phys Technol Surf 3(3):335–340 (in Ukrainian)

    Google Scholar 

  28. Kovalska EO, Sementsov YuI, Prikhodko GP (2012) A method for producing catalysts for chemical vapor deposition of carbon nanotubes from gas phase. UA Patent 70847, 25 June 2012 (in Ukrainian)

    Google Scholar 

  29. Hyung H, Fortner JD, Hughes JB, Kim JH (2007) Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ Sci Technol 41(1):179–184

    Article  ADS  Google Scholar 

  30. Wang Zh, Shirley MD, Meikle ST et al (2009) The surface acidity of acid oxidised multi-walled carbon nanotubes and the influence of in situ generated fulvic acids on their stability in aqueous dispersions. Carbon 47:73–79

    Article  Google Scholar 

  31. Bonard JM, Stora T, Salvetat JP et al (1997) Purification and size-selection of carbon nanotubes. Adv Mater 9(10):827–831

    Article  Google Scholar 

  32. Chun K-Y, Choi SK, Kang HJ et al (2006) Highly dispersed multi-walled carbon nanotubes in ethanol using potassium doping. Carbon 44:1491–1495

    Article  Google Scholar 

  33. Yu J, Grossiord N, Koning CE, Loos J (2007) Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon 45:618–623

    Article  Google Scholar 

  34. Rausch J et al (2010) Surfactant assisted dispersion of functionalized multi-walled carbon nanotubes in aqueous media. Comp. Part A: Appl. Sci. Manuf 41:1038–1046

    Google Scholar 

  35. Kim H-S, Park WI, Kang M, Jin H-J (2008) Multiple light scattering measurement and stability analysis of aqueous carbon nanotube dispersions. J Phys Chem Solids 69:1209–1212

    Article  ADS  Google Scholar 

  36. Bystrzejewski M, Huczko A, Lange H (2010) Dispersion and diameter separation of multi-wall carbon nanotubes in aqueous solutions. J Colloid Interface Sci 345:138–142

    Article  Google Scholar 

  37. Zhao L, Gao L (2003) Stability of multi-walled carbon nanotubes dispersion with copolymer in ethanol. Colloids Surf A: PhysicochemEng Aspects 224:127–134

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. O. Kovalska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Kovalska, E., Sementsov, Y.I. (2013). Carbon Nanotubes Deagglomeration in Aqueous Solutions. In: Fesenko, O., Yatsenko, L., Brodin, M. (eds) Nanomaterials Imaging Techniques, Surface Studies, and Applications. Springer Proceedings in Physics, vol 146. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7675-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7675-7_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7674-0

  • Online ISBN: 978-1-4614-7675-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics