Interplay of Quadratic and Cubic Nonlinear Optical Responses in KDP Single Crystals with Incorporated TiO2 Nanoparticles

  • V. Ya. Gayvoronsky
  • M. A. Kopylovsky
  • M. S. Brodyn
  • A. S. Popov
  • V. O. Yatsyna
  • I. M. Pritula
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 146)


We have obtained the significant enhancement (up to 70 %) of the second harmonic generation efficiency in the novel composite material based on KDP single crystalline matrix with incorporated anatase nanoparticles under the mode-locked YAG:Nd laser pulsed excitation. The effect is explained by the internal self-focusing at moderate pump peak intensity due to giant cubic nonlinear optical response of anatase nanoparticles. The possibility to control quadratic and cubic nonlinear optical responses with selection of the nanoparticles concentration and growth sector of the crystal was shown. The nonlinear optical refractive index variation is a very sensitive tool to perform the diagnostics of the KDP and KDP:TiO2 single crystals within CW and pulsed picosecond range laser radiation due to the resonant excitation of the transient intrinsic defect states of the crystal matrix and surface states at the anatase nanoparticles interface.


Second Harmonic Generation Nonlinear Refractive Index Growth Sector TiO2 Crystal Second Harmonic Generation Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to A. Kosinova for the KDP SC characterization, A. Shkurinov and V. Timoshenko for fruitful discussions, A. Uklein for the assistance in manuscript preparation. The work was partially supported by the NASU 1.4.1 B/141 project, M/312-2012 and CRDF # UKE2-7073-KK-12 grants.


  1. 1.
    Benedict JB, Wallace PM, Reid PJ et al (2003) Adv Mater 15:1068–1070Google Scholar
  2. 2.
    Rifani M, Yin Y-Y, Elliott DS et al (1995) J Am Chem Soc 117:7572–7573Google Scholar
  3. 3.
    Pritula I, Gayvoronsky V, Kolybaeva M et al (2011) Opt Mater 33:623–630Google Scholar
  4. 4.
    Pritula I, Gayvoronsky V, Kolybaeva M et al (2008) Funct Mater 15:420-428Google Scholar
  5. 5.
    Rudneva EB, Manomenova VL, Voloshin AE et al (2006) Crystallogr Rep 51:142–149Google Scholar
  6. 6.
    Bensouici A, Plaza JL, Halimi O et al (2008) J Optoelectron Adv Mater 10:3051–3053Google Scholar
  7. 7.
    Grachev V, Vrable I, Gayvoronsky V et al (2012) J Appl Phys 112:014315 (p 11)Google Scholar
  8. 8.
    Gayvoronsky V, Kopylovsky M, Yatsyna V et al (2012) Ukr J Phys 57:157–165Google Scholar
  9. 9.
    Pritula I, Bezkrovnaya O, Kolybayeva M et al (2011) Mater Chem Phys 129:777–782Google Scholar
  10. 10.
    Borshch A, Brodyn M, Gayvoronsky V et al (2004) Ukr J Phys 49:196–202Google Scholar
  11. 11.
    Lee Smith W, Weber MJ (eds) (1988) CRC handbook of laser science and technology, vol 3, Part 1, CRC Press Inc., Boca Raton, Florida, pp 229–258Google Scholar
  12. 12.
    Gayvoronsky V, Timoshenko V et al (2005) Appl Phys B 80:97–100Google Scholar
  13. 13.
    Sheik-Bahae M, Said AA, Wei T et al (1990) IEEE J Quant Elect 26:760–769Google Scholar
  14. 14.
    Gayvoronsky V, Yakunin S, Nazarenko V et al (2005) Mol Cryst Liq Cryst 426:231–241Google Scholar
  15. 15.
    Gayvoronsky V Ya, Kopylovsky MA, Brodyn MS et al (2013) Laser Phys Lett 10:035401 (p 5)Google Scholar
  16. 16.
    Nikogosyan DN (2005) Nonlinear optical crystals: a complete survey. Springer, New YorkGoogle Scholar
  17. 17.
    Gayvoronsky V, Starkov V, Kopylovsky M et al (2010) Ukr J Phys 55:875–884Google Scholar
  18. 18.
    Ogorodnikov I, Yakovlev V, Shul’gin B et al (2002) Phys Sol State 44:845–852Google Scholar
  19. 19.
    Nelson DF (2000) High frequency properties of dielectric crystals, Landolt-Bornstein New series, Group III, vol 30, Springer, BerlinGoogle Scholar
  20. 20.
    Lin Zh, Wang Zh, Chen Ch et al (2008) J Chem Phys 118:2349 (p 8)Google Scholar
  21. 21.
    Ganeev R, Kulagin I, Ryasnyansky A et al (2004) Opt Comm 229:403–412Google Scholar
  22. 22.
    Mironov Yu S, Lozhkarev VV, Ginzburg VN et al (2012) IEEE J Sel Top Quant Electron 18:7–13Google Scholar
  23. 23.
    Brodyn M, Gayvoronsky V (2012) International Conference on OMEE Lviv, Ukraine, p 197, 3–7 Sep 2012Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • V. Ya. Gayvoronsky
    • 1
  • M. A. Kopylovsky
    • 1
  • M. S. Brodyn
    • 1
  • A. S. Popov
    • 1
  • V. O. Yatsyna
    • 1
  • I. M. Pritula
    • 2
  1. 1.Institute of Physics NAS of UkraineKievUkraine
  2. 2.Institute for Single Crystals NAS of UkraineKharkovUkraine

Personalised recommendations