Comparison of Poly(rI) and Poly(rA) Adsorption on Carbon Nanotubes

  • M. V. Karachevtsev
  • G. O. Gladchenko
  • V. A. Karachevtsev
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 146)

Abstract

A comparison of adsorption property of homopolynucleotides poly(rA) and poly(rI) on the single-walled carbon nanotubes (SWCNTs) showed that adsorption of the poor base stacked poly(rI) onto the nanotube in aqueous suspension is less effective than the high stacked poly(rA) the chain of which is of higher rigidity. Molecular dynamics modeling demonstrated that oligomer r(I)25 has an essential weaker binding energy to the carbon nanotube surface than r(A)25 (250 kcal/mol versus 350 kcal/mol). Structural analysis of oligomers on the nanotube surface revealed that the more ordered oligomer is of tendency to the helical conformation around the nanotube and this provides higher binding energy. On the contrary, a more flexible r(I)25 forms a stable loop kept away from the nanotube surface, which is strengthened by hypoxanthine H-bonding between bases located in different loop places. As well, in comparison with poly(rA), less effective adsorption of poly(rI) is confirmed with a weaker hypochromic effect of nanotubes covered with poly(rI) than with poly(rA), which originates from π-π-stacking of nitrogen bases with the nanotube surface.

Keywords

Carbon nanotube Oligonucleotide RNA π-stacking interaction Absorption spectroscopy Molecular dynamics 

References

  1. 1.
    O’Connell MJ, Boul P, Ericson LM et al (2001) Reversible water solubilization of single-walled carbon nanotubes by polymer wrapping. Chem Phys Lett 342:265–271CrossRefGoogle Scholar
  2. 2.
    Hasan T, Tan PH, Bonaccorso F et al (2008) Polymer-assisted isolation of single wall carbon nanotubes in organic solvents for optical-quality nanotube-polymer composites. J Phys Chem C 112:20227–20232CrossRefGoogle Scholar
  3. 3.
    Zheng M, Jagota A, Strano M et al (2003) Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302:1545–1548CrossRefADSGoogle Scholar
  4. 4.
    Star A, Stoddart JF, Steuerman D et al (2001) Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angew Chem Int Ed 40:1721–1725CrossRefGoogle Scholar
  5. 5.
    Rahmat M, Hubert P (2011) Carbon nanotube–polymer interactions in nanocomposites. A review. Compos Sci Technol 72:72–84CrossRefGoogle Scholar
  6. 6.
    Kusner I, Srebnik S (2006) Conformational behavior of semi-flexible polymers confined to a cylindrical surface. Chem Phys Lett 430:84–88CrossRefADSGoogle Scholar
  7. 7.
    Gurevitch I, Srebnik S (2008) Conformational behavior of polymers adsorbed on nanotubes. J Chem Phys 128:144901-1–144901-8Google Scholar
  8. 8.
    Tallury SS, Pasquinelli MA (2010) Molecular dynamics simulations of flexible polymer chains wrapping single-walled carbon nanotubes. J Phys Chem B 114:4122–4129CrossRefGoogle Scholar
  9. 9.
    Tallury SS, Pasquinelli MA (2010) Molecular dynamics simulations of polymers with stiff backbones interacting with single-walled carbon nanotubes. J Phys Chem B 114:9349–9355CrossRefGoogle Scholar
  10. 10.
    Frischknecht AL, Martin MG (2008) Simulation of the adsorption of nucleotide monophosphates on carbon nanotubes in aqueous solution. J Phys Chem C 112:6271–6278CrossRefGoogle Scholar
  11. 11.
    Karachevtsev VA, Gladchenko GO, Karachevtsev MV et al (2008) Adsorption of poly(rA) on the carbon nanotube surface and its hybridization with poly(rU). Chem Phys Phys Chem 9:2872–2881Google Scholar
  12. 12.
    Martin W, Zhu W, Krilov G (2008) Simulation study of noncovalent hybridization of carbon nanotubes by single-stranded DNA in water. J Phys Chem B 112:16076–16089CrossRefGoogle Scholar
  13. 13.
    Karachevtsev MV, Lytvyn OS, Stepanian SG et al (2008) SWCNT-DNA and SWCNT-polyC hybrids: AFM study and computer modeling. J Nanosci Nanotechnol 8:1473–1480Google Scholar
  14. 14.
    Johnson RR, Kohlmeyer A, Johnson ATC et al (2009) Free energy landscape of a DNA-carbon nanotube hybrid using replica exchange molecular dynamics. Nano Lett 9:537–541CrossRefADSGoogle Scholar
  15. 15.
    Johnson RR, Johnson ATC, Klein ML (2010) The nature of DNA-base–carbon-nanotube interactions. Small 6:31–34CrossRefGoogle Scholar
  16. 16.
    Roxbury D, Mittal J, Jagota A (2012) Molecular-basis of single-walled carbon nanotube recognition by single-stranded DNA. Nano Lett 12:1464–1469CrossRefADSGoogle Scholar
  17. 17.
    Karachevtsev MV, Karachevtsev VA (2011) Peculiarities of homooligonucleotides wrapping around carbon nanotubes: molecular dynamics modeling. J Phys Chem B 115:9271–9279CrossRefGoogle Scholar
  18. 18.
    Tu X, Manohar S, Jagota A et al (2009) DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460:250–253CrossRefADSGoogle Scholar
  19. 19.
    Stepanian SG, Karachevtsev MV, Glamazda AYu et al (2009) Raman spectroscopy study and first-principles calculations of the interaction between nucleic acid bases and carbon nanotubes. J Phys Chem A 113:3621–3629CrossRefGoogle Scholar
  20. 20.
    Shukla MK, Dubey M, Zakar E et al (2009) Interaction of nucleic acid bases with single-walled carbon nanotube. Chem Phys Lett 480:269–272CrossRefADSGoogle Scholar
  21. 21.
    Karachevtsev VA, Glamazda AYu, Dettlaff-Weglikowska U et al (2006) Spectroscopic and SEM studies of SWCNTs: polymer solutions and films. Carbon 44:1292–1297CrossRefGoogle Scholar
  22. 22.
    Hughes ME, Brandin E, Golovchenko JA (2007) Optical absorption of DNA—carbon nanotube structures. Nano Lett 7:1191–1194CrossRefADSGoogle Scholar
  23. 23.
    Karachevtsev VA, Plokhotnichenko AM, Karachevtsev MV et al (2012) Decrease of carbon nanotube UV light absorption induced by π-stacking interaction with nucleotide bases. Carbon 48:3682–3691CrossRefGoogle Scholar
  24. 24.
    Cantor CR, Schimmel PR (1980) Biophysical Chemistry. W.H. Freeman and Company, San FranciscoGoogle Scholar
  25. 25.
    Tinoco I Jr (1960) Hypochromism in polynucleotides. J Am Chem Soc 82:4785–4790CrossRefGoogle Scholar
  26. 26.
    Holcomb DN, Timasheff SN (1968) Temperature dependence of the hydrogen ion equilibria in poly(riboadenylic acid). Biopolymers 6:513–529CrossRefGoogle Scholar
  27. 27.
    Brams J, Michelson AM, van Holde KE (1966) Adenylate oligomers in single- and double-strand conformation. J Mol Biol 15:467–488CrossRefGoogle Scholar
  28. 28.
    Thiele D, Guschlbauer W (1973) The structures of polyinosinic acid. Biophysik 9:261–277CrossRefGoogle Scholar
  29. 29.
    Howard FB, Miles HT (1982) Poly(inosinic acid) helices: essential chelation of alkali metal ions in the axial channel. Biochemistry 21:6736–6745CrossRefGoogle Scholar
  30. 30.
    Phillips JC, Braun R, Wang W et al (2005) Scalable molecular dynamics with NAMD. J Comp Chem 26:1781–1802CrossRefGoogle Scholar
  31. 31.
    Foloppe N, MacKerell AD Jr (2000) All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. J Comp Chem 21:86–104CrossRefGoogle Scholar
  32. 32.
    Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Molec Graph 14:33–38Google Scholar
  33. 33.
    Seol Y, Skinner GM, Visscher K et al (2007) Stretching of homopolymeric RNA reveals single-stranded helices and base-stacking. Phys Rev Lett 98:158103-1–158103-4Google Scholar
  34. 34.
    Cech CL, Tinoco I Jr (1976) Circular dichroism calculations for polyinosinic acid in proposed multi-stranded geometries. Nucl Acids Res 3:399–404CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • M. V. Karachevtsev
    • 1
  • G. O. Gladchenko
    • 1
  • V. A. Karachevtsev
    • 1
  1. 1.B.I. Verkin Institute for Low Temperature Physics and EngineeringKharkovUkraine

Personalised recommendations