Skip to main content

Nano-Bio Architectures: Combining Chemistry and Biology in Nanotechnology

  • Conference paper
  • First Online:
  • 1574 Accesses

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 146))

Abstract

Bionanocomposite materials have tremendous potential in biomedical product research/development and applications such as medical devices, surgical implants, pharmacological product, biologics/vaccines, and advanced diagnostics tools. Bionanocomposites are a combination of biopolymeric materials combined with inert organic or inorganic materials fabricated in the nanometer scales. Biopolymers of natural origin such as proteins, polysaccharides, aliphatic polyesters, and nucleic acids serve as the core material in bionanocomposite development. This paper will provide a summary of the Nanobiocomposites and an overview of the technical challenges in the development, purification, characterization of biopolymers, and integration with other inert organic and inorganic chemical components in the fabrication of bionanocomposites. The paper will also cover the importance of the interactions between the functional components of the active bionano-structures with the inert layers in the development of biologically effective functional bionanocomposite architectures. A brief summary of the current United States and European regulations will be provided on the release of nanoparticles in the general environment and current risk assessment approaches to assess its potential adverse effects on public health and the ecosystem

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chu C (2010) Development of polymer nanocomposites for automotive applications. Thesis presented to Georgia Institute of Technology. December http://smartech.gatech.edu/jspui/bitstream/1853/37128/1/chu_chun_201012_mast.pdf

  2. IBM (2007) IBM Brings Nature to computer chip manufacturing: First-ever manufacturing application of “self assembly” used to create a vacuum—the ultimate insulator—around nanowires for next-generation microprocessors. http://www-03.ibm.com/press/us/en/pressrelease/21473.wss

  3. Napp N, Klavins E (2011) A compositional framework for programming stochastically interacting robots. Int J Robot Res 30(6):713–729

    Article  Google Scholar 

  4. US National Academy of Sciences (NAS) (2008) Inspired by biology: from molecules to materials to machines. ISBN-10:0-309-11704-6. National Academy Press, Washington DC

    Google Scholar 

  5. Bromley EH, Channon K, Moutevelis E, Woolfson DN (2008) Peptide and protein building blocks for synthetic biology: from programming biomolecules to self-organized biomolecular systems. ACS Chem Biol 3(1):38–50

    Article  Google Scholar 

  6. Takahashi S, Sato M, Anzai J (2012) Layer-by-layer construction of protein architectures through avidin-biotin and lectin-sugar interactions for biosensor applications. Anal Bioanal Chem 402(5):1749–1758

    Article  Google Scholar 

  7. Kim DC, Sohn JI, Zhou D, Duke TA, Kang DJ (2010) Controlled assembly for well-defined 3D bioarchitecture using two active enzymes. ACS Nano 4(3):1580–1586

    Article  Google Scholar 

  8. Tan H, Zhou Q, Qi H, Zhu D, Ma X, Xiong D (2012) Heparin interacting protein mediated assembly of nano-fibrous hydrogel scaffolds for guided stem cell differentiation. Macromol Biosci 12(5):621–627

    Article  Google Scholar 

  9. Li X, Koller G, Huang J, Di Silvio L, Renton T, Esat M, Bonfield W, Edirisinghe M (2010) A novel jetbased nano-hydroxyapatite patterning technique for osteoblast guidance. J R Soc Interface 7:189–197

    Article  Google Scholar 

  10. Duan B, Wang M (2010) Customized Ca–P/PHBV nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor. J R Soc Interface 7:S615–S629

    Article  Google Scholar 

  11. Jung JP, Gasiorowski JZ, Collier JH (2010) Fibrillar peptide gels in biotechnology and biomedicine. Biopolymers. 94(1):49–59

    Google Scholar 

  12. Riley JM, Aggeli A, Koopmans RJ, McPherson MJ (2009) Bioproduction and characterization of a pH responsive self-assembling peptide. Biotechnol Bioeng 103:241–251

    Article  Google Scholar 

  13. Gras SL, Tickler AK, Squires AM, Devlin GL, Horton MA, Dobson CM, MacPhee CE (2008) Functionalised amyloid fibrils for roles in cell adhesion. Biomaterials 29:1553–1562

    Article  Google Scholar 

  14. Yamaguchi I, Tokuchi K, Fukuzaki H, Koyama Y, Takakuda K, Monma H, Tanaka J (2001) Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. J Biomed Materi Res 55(1):20–27

    Article  Google Scholar 

  15. Wei D, Sun W, Qian W, Ye Y, Ma X (2009) The synthesis of chitosanbased silver nanoparticles and their antibacterial activity’. Carbohydr Res 344(17):2375–2382

    Article  Google Scholar 

  16. Lee JY, Choi YS, Lee SJ, Chung CP, Park YJ (2011) Bioactive peptide-modified biomaterials for bone regeneration. Curr Pharm Des 17(25):2663–2676

    Article  Google Scholar 

  17. Subramanian A, Krishnan UM, Sethuraman S (2009) Development of biomaterial scaffold for nerve tissue engineering: biomaterial mediated neural regeneration. J Biomed Sci 16:108

    Article  Google Scholar 

  18. Xu RJ, Manias E, Snyder AJ, Runt J (2003) Low permeability biomedical polyurethane nanocomposites. J Biomed Mater Res Part 64A:114–119

    Article  Google Scholar 

  19. Xu R, Manias E, Snyder AJ, Runt J (2001) New biomedical poly(urethane urea)-layered silicate Nanocomposites. Macromolecules 34:337–339

    Article  ADS  Google Scholar 

  20. Valluzzi R, Gido SP, Muller W, Kaplan DL (1999) Bombyx mori silk fibroin liquid crystallinity and crystallization at aqueous fibroin-organic solvent interfaces. Int J Biol Macromol 24:227–236

    Article  Google Scholar 

  21. Yan HB, Zang YQ, Ma YL, Zhou LX (2009) Biosynthesis of insulin-silk fibroin nanoparticles conjugates and in vitro evaluation of a drug delivery system. J Nanopart Res 11:1937–1946

    Google Scholar 

  22. Teow Y, Asharani PV, Prakash M, Valiyaveettil S (2011) Health impact and safety of engineered nanomaterials. Chem Commun 47:7025–7038

    Article  Google Scholar 

  23. Novikova LN, Pettersson J, Brohlin M, Wiberg M, Novikov LN (2008) Biodegradable poly-b-hydroxybutyrate scaffold seeded with Schwann cells to promote spinal cord repair. Biomaterials 29:1198–1206

    Article  Google Scholar 

  24. Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2(8):1–35

    Google Scholar 

  25. Stoeger T, Takenaka S, Frankenberger B, Ritter B, Karg E, Maier K, Schulz H, Schmid O (2009) Deducing in vivo toxicity of combustion-derived nanoparticles from a cell-free oxidative potency assay and metabolic activation of organic compounds. Environ Health Perspect 117:54–60

    Article  Google Scholar 

  26. Wittmaack K (2007) In search of the most relevant parameter for quantifying lung inflammatory response to nanoparticle exposure: particle number, surface area, or what? Environ Health Perspect 115:187–194

    Article  Google Scholar 

  27. Warheit DB, Sayes CM, Reed K. Swai KA (2008) Health effects related to nanoparticle exposures: Environmental, health and safety considerations for assessing hazards and risks. Pharmacology Therapeutics, 120:35–42

    Google Scholar 

  28. Maynard AD, Aitken RJ (2007) Assessing exposure to airborne nanomaterials: current abilities and future requirements. Nanotoxicology 1(1):26–41

    Article  Google Scholar 

  29. Thomas T, Thomas K, Sadrieh N, Savage N, Adair P, Bronaugh R (2006) Research strategies for safety evaluation of nanomaterials, Part VII: evaluating consumer exposure to nanoscale materials. Toxicol Sci 91(1):14–19

    Article  Google Scholar 

  30. Lam CW, James JT, McCluskey R, Hunter RL (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134

    Article  Google Scholar 

  31. Uwe F, Andreas H, Petra BW, Katja S, Sigrid CS, Milauscha G, Andrea Z, Woranan P, Stefan Z, Dorit M, Alexander S, Carsten W (2009) A star-PEG-heparin hydrogel platform to aid cell replacement therapies for neurodegenerative diseases. Biomaterials 30:5049–5060

    Article  Google Scholar 

  32. Haile Y, Berski S, Drager G, Nobre A, Stummeyer K, Gerardy-Schahn R, Grothe C (2008) The effect of modified polysialic acid based hydrogels on the adhesion and viability of primary neurons and glial cells. Biomaterials 29:1880–1891

    Article  Google Scholar 

  33. Crompton KE, Goud JD, Bellamkonda RV, Gengenbach TR, Finkelstein DI, Hornet MK, Forsythe JS (2007) Polylysine-functionalised thermo responsive chitosan hydrogel for neural tissue engineering. Biomaterials 28:441–449

    Google Scholar 

  34. Duan X, McLaughlin C, Griffith M, Sheardown H (2007) Biofunctionalization of collagen for improved biological response: Scaffolds for corneal tissue engineering. Biomaterials 28:78–88

    Article  Google Scholar 

  35. Schnell E, Klinkhammer K, Balzer S, Brook G, Klee D, Dalton P, Mey J (2007) Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-e-caprolactone and a collagen/poly-e-caprolactone blend. Biomaterials 28:3012–3025

    Article  Google Scholar 

  36. Zhang Z, Rouabhia M, Wang Z, Roberge C, Shi G, Roche P, Li J, Dao LH (2007) Electrically conductive biodegradable polymer composite for nerve regeneration: electricity-stimulated neurite outgrowth and axon regeneration. Artif Organs 31:13–22

    Article  Google Scholar 

  37. Bettinger CJ, Orrick B, Misra A, Langer R, Borenstein JT (2006) Microfabrication of poly (glycerol-sebacate) for contact guidance applications. Biomaterials 27:2558–2565

    Article  Google Scholar 

  38. Kumar P, Sandeep KP, Alavi S, Truong VD, Gorga RE (2010) Preparation and characterization of bio-nanocomposite films based on soy protein isolate and montmorillonite using melt extrusion. J Food Eng 100:480–489

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkat Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Rao, V. (2013). Nano-Bio Architectures: Combining Chemistry and Biology in Nanotechnology. In: Fesenko, O., Yatsenko, L., Brodin, M. (eds) Nanomaterials Imaging Techniques, Surface Studies, and Applications. Springer Proceedings in Physics, vol 146. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7675-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7675-7_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7674-0

  • Online ISBN: 978-1-4614-7675-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics