Skip to main content

Sensorimotor Control After Stroke

  • Chapter
  • First Online:
The Behavioral Consequences of Stroke

Abstract

Approximately two-thirds of stroke survivors have residual neurological deficits that impair function and approximately 50 % are left with disabilities that render them dependent on others for activities of daily living. While the economic burden of stroke on the health care system is substantial (approximately $2.7 billion and 3 million hospital days annually) [1], the human cost to stroke survivors, and their families is incalculable. Despite improvements in acute stroke care, understanding of recovery processes is still relatively underdeveloped and there is a need for new innovative approaches to improve rehabilitation, promote recovery, lessen disability, and prevent subsequent stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heart and Stroke Foundation of Ontario. Facts you should know about heart disease and stroke. Toronto, ON: Ontario Heart and Stroke Foundation; 1999.

    Google Scholar 

  2. Basmajian JV, Gowland C, Brandstater ME, Swanson L, Trotter J. EMG feedback treatment of upper limb in hemiplegic stroke patients: a pilot study. Arch Phys Med Rehabil. 1982;63(12):613–6.

    PubMed  CAS  Google Scholar 

  3. Barreca S, Wolf SL, Fasoli S, Bohannon R. Treatment interventions for the paretic upper limb of stroke survivors: a critical review. Neurorehabil Neural Repair. 2003;17:220–6.

    Article  PubMed  Google Scholar 

  4. Wolf SL, Winstein CJ, Miller JP, Taub E, Uswatte G, Morris D, Giuliani C, Light KE, Nichols-Larsen D, EXCITE Investigators. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA. 2006;296:2095–104.

    Article  PubMed  CAS  Google Scholar 

  5. Nudo RJ, Friel KM, Delia SW. Role of sensory deficits in motor impairments after injury to primary motor cortex. Neuropharmacology. 2000;39:733–42.

    Article  PubMed  CAS  Google Scholar 

  6. Staines WR, Black SE, Graham SJ, McIlroy WE. Somatosensory gating and recovery from stroke involving the thalamus. Stroke. 2002;33:2642–51.

    Article  PubMed  Google Scholar 

  7. Bell-Krotoski J, Weinstein S, Weinstein C. Testing sensibility, including touch-pressure, two-point discrimination, point localization, and vibration. J Hand Ther. 1993;6:114–23.

    Article  PubMed  CAS  Google Scholar 

  8. Bell-Krotoski JA, Fess EE, Figarola JH, Hiltz D. Threshold detection and Semmes-Weinstein monofilaments. J Hand Ther. 1995;8:155–62.

    Article  PubMed  CAS  Google Scholar 

  9. Eguibar JR, Quevedo J, Jimenez I, Rudomin P. Selective cortical control of information flow through different intraspinal collaterals of the same muscle afferent fiber. Brain Res. 1994;643:328–33.

    Article  PubMed  CAS  Google Scholar 

  10. Knecht S, Kunesch E, Buchner H, Freund H-J. Facilitation of somatosensory evoked potentials by exploratory finger movements. Exp Brain Res. 1993;95:330–8.

    Article  PubMed  CAS  Google Scholar 

  11. Staines WR, Brooke JD, McIlroy WE. Task-relevant selective modulation of somatosensory afferent paths from the lower limb. Neuroreport. 2000;11:1713–9.

    Article  PubMed  CAS  Google Scholar 

  12. Knight RT, Staines WR, Swick D, Chao LL. Prefrontal cortex regulates inhibition and excitation in distributed neural networks. Acta Psychol. 1999;101:159–78.

    Article  CAS  Google Scholar 

  13. Bolton DA, Staines WR. Transient inhibition of the dorsolateral prefrontal cortex disrupts attention-based modulation of tactile stimuli at early stages of somatosensory processing. Neuropsychologia. 2011;49:1928–37.

    Article  PubMed  Google Scholar 

  14. Bolton DA, Brown KE, McIlroy WE, Staines WR. Transient inhibition of the dorsolateral prefrontal cortex disrupts somatosensory modulation during standing balance as measured by electroencephalography. Neuroreport. 2012;23:369–72.

    Article  PubMed  Google Scholar 

  15. Kim JS. Pure sensory stroke. Clinical-radiological correlates of 21 cases. Stroke. 1992;23:983–7.

    Article  PubMed  CAS  Google Scholar 

  16. Kim JS. Lenticulocapsular hemorrhages presenting as pure sensory stroke. Eur Neurol. 1999;42:128–31.

    Article  PubMed  CAS  Google Scholar 

  17. Remy P, Zilbovicius M, Cesaro P, Amarenco P, Degos JD, Samson Y. Primary somatosensory cortex activation is not altered in patients with ventroposterior thalamic lesions: a PET study. Stroke. 1999;30:2651–8.

    Article  PubMed  CAS  Google Scholar 

  18. Fuster JM. The prefrontal cortex. 4th ed. London: Academic; 2008.

    Google Scholar 

  19. Chao LL, Knight RT. Human prefrontal lesions increase distractibility to irrelevant sensory inputs. Neuroreport. 1995;6:1605–10.

    Article  PubMed  CAS  Google Scholar 

  20. Chao LL, Knight RT. Contribution of human prefrontal cortex to delay performance. J Cogn Neurosci. 1998;10:167–77.

    Article  PubMed  CAS  Google Scholar 

  21. Dolcos F, Miller B, Kragel P, Jha A, McCarthy G. Regional brain differences in the effect of distraction during the delay interval of a working memory task. Brain Res. 2007;1152:171–81.

    Article  PubMed  CAS  Google Scholar 

  22. Croxson PL, Johansen-Berg H, Behrens TE, Robson MD, Pinsk MA, Gross CG, et al. Quantitative investigation of connections of the prefrontal cortex in the human and macaque using probabilistic diffusion tractography. J Neurosci. 2005;25:8854–66.

    Article  PubMed  CAS  Google Scholar 

  23. Cao XH, Wang DH, Bai J, Zhou SC, Zhou YD. Prefrontal modulation of tactile responses in the ventrobasal thalamus of rats. Neurosci Lett. 2008;435:152–7.

    Article  PubMed  CAS  Google Scholar 

  24. Zikopoulos B, Barbas H. Prefrontal projections to the thalamic reticular nucleus form a unique circuit for attentional mechanisms. J Neurosci. 2006;26:7348–61.

    Article  PubMed  CAS  Google Scholar 

  25. Yamaguchi S, Knight RT. Gating of somatosensory input by human prefrontal cortex. Brain Res. 1990;521:281–8.

    Article  PubMed  CAS  Google Scholar 

  26. Yingling CD, Skinner JE. Selective regulation of thalamic sensory relay nuclei by nucleus reticularis thalami. Electroencephalogr Clin Neurophysiol. 1976;41:476–82.

    Article  PubMed  CAS  Google Scholar 

  27. Skinner JE, Yingling CD. Central gating mechanisms that regulate event-related potentials and behavior. Prog Clin Neurophysiol. 1977;1:70–96.

    Google Scholar 

  28. Pandya DN, Barnes CL. Architecture and connections of the frontal lobe. In: Perecman E, editor. The frontal lobes revisited. New York, NY: IRBN; 1987. p. 41–72.

    Google Scholar 

  29. Hamalainen H, Kekoni J, Sams M, Reinikainen K, Näätänen R. Human somatosensory evoked potentials to mechanical pulses and vibration: contributions of SI and SII somatosensory cortices to P50 and P100 components. Electroencephalogr Clin Neurophysiol. 1990;75:13–21.

    Article  PubMed  CAS  Google Scholar 

  30. Hannula H, Neuvonen T, Savolainen P, Hiltunen J, Ma YY, Antila H, et al. Increasing top-down suppression from prefrontal cortex facilitates tactile working memory. Neuroimage. 2010;49:1091–8.

    Article  PubMed  Google Scholar 

  31. Savolainen P, Carlson S, Boldt R, Neuvonen T, Hannula H, Hiltunen J, et al. Facilitation of tactile working memory by top-down suppression from prefrontal to primary somatosensory cortex during sensory interference. Behav Brain Res. 2011;219:387–90.

    Article  PubMed  Google Scholar 

  32. Duncan PW, Goldstein LB, Matchar D, Divine GW, Feussner J. Measurement of motor recovery after stroke. Outcome assessment and sample size requirements. Stroke. 1992;23:1084–9.

    Article  PubMed  CAS  Google Scholar 

  33. Smith AL, Staines WR. Cortical adaptations and motor performance improvements associated with short-term bimanual training. Brain Res. 2006;1071:165–74.

    Article  PubMed  CAS  Google Scholar 

  34. Smith AL, Staines WR. Cortical and behavioural adaptations in response to short-term inphase versus antiphase bimanual movement training. Exp Brain Res. 2010;205:465–77.

    Article  PubMed  Google Scholar 

  35. Smith AL, Staines WR. Externally cued inphase bimanual training enhances preparatory premotor activity. Clin Neurophysiol. 2012;123(9):1846–57.

    Article  PubMed  Google Scholar 

  36. Neva JL, Legon W, Staines WR. Primary motor cortex excitability is modulated with bimanual training. Neurosci Lett. 2012;514:147–51.

    Article  PubMed  CAS  Google Scholar 

  37. Cramer SC. Repairing the human brain after stroke. I. Mechanisms of spontaneous recovery. Ann Neurol. 2008;63:272–87.

    Article  PubMed  Google Scholar 

  38. Butler AJ, Wolf SL. Putting the brain on the map: use of transcranial magnetic stimulation to assess and induce cortical plasticity of upper-extremity movement. Phys Ther. 2007;87:719–36.

    Article  PubMed  Google Scholar 

  39. Taub E, Miller NE, Novak TA, Cook EW, Fleming WC, Nepomuceno CS, et al. Technique to improve chronic motor deficit after stroke. Arch Phys Med Rehabil. 1993;74:347–54.

    PubMed  CAS  Google Scholar 

  40. Wolf SL, Lecraw DE, Barton LA, Jann BB. Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head injured patients. Exp Neurol. 1989;104:104–32.

    Article  Google Scholar 

  41. Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res. 2008;5:S225–39.

    Article  Google Scholar 

  42. Hallett M. Recent advances in stroke rehabilitation. Neurorehabil Neural Repair. 2002;16:211–7.

    Article  PubMed  Google Scholar 

  43. Cramer SC. Repairing the human brain after stroke. II. Restorative therapies. Ann Neurol. 2008;63:549–60.

    Article  PubMed  Google Scholar 

  44. Cuadrado ML, Arias JA. Bilateral movement enhances ipsilesional cortical activity in acute stroke: a pilot functional MRI study. Neurology. 2001;57:1740–1.

    Article  PubMed  CAS  Google Scholar 

  45. Luft AR, McCombe Waller S, Whitall J, Forrester LW, Macko R, Sorkin JD, et al. Repetitive bilateral arm training and motor cortex activation in chronic stroke: a randomized controlled trial. JAMA. 2004;292:1853–61.

    Article  PubMed  CAS  Google Scholar 

  46. Whitall J, McCombe Waller S, Silver KH, Macko RF. Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke. Stroke. 2000;31:2390–5.

    Article  PubMed  CAS  Google Scholar 

  47. Mudie MH, Matyas TA. Can simultaneous bilateral movement involve the undamaged hemisphere in reconstruction of neural networks damaged by stroke? Disabil Rehabil. 2000;22:23–37.

    Article  PubMed  CAS  Google Scholar 

  48. Stewart KC, Cauraugh JH, Summers JJ. Bilateral movement training and stroke rehabilitation: a systematic review and meta-analysis. J Neurol Sci. 2006;244:89–95.

    Article  PubMed  Google Scholar 

  49. McCombe Waller S, Whitall J. Bilateral arm training: why and who benefits? Neuro-Rehabilitation. 2008;23:29–41.

    PubMed  Google Scholar 

  50. Silvestrini M, Cupini LM, Placidi F, Diomedi M, Bernardi G. Bilateral hemispheric activation in the early recovery of motor function after stroke. Stroke. 1998;29:1305–10.

    Article  PubMed  CAS  Google Scholar 

  51. Staines WR, McIlroy WE, Graham SJ, Black SE. Bilateral movement enhances ipsilesional cortical activity in acute stroke: a pilot functional MRI study. Neurology. 2001;56:401–4.

    Article  PubMed  CAS  Google Scholar 

  52. Stinear CM, Barber PA, Coxon JP, Fleming MK, Byblow WD. Priming the motor system enhances the effects of upper limb therapy in chronic stroke. Brain. 2008;131:1381–90.

    Article  PubMed  Google Scholar 

  53. Carson RG, Riek S, Mackey DC, Meichenbaum DP, Willms K, Forner M, Byblow WD. Excitability changes in human forearm corticospinal projections and spinal reflex pathways during rhythmic voluntary movement of the opposite limb. J Physiol. 2004;560:929–40.

    Article  PubMed  CAS  Google Scholar 

  54. Carson RG, Smethurst CJ, Oytam Y, de Rugy A. Postural context alters the stability of bimanual coordination by modulating the crossed excitability of corticospinal pathways. J Neurophysiol. 2007;97:2016–23.

    Article  PubMed  Google Scholar 

  55. Perez MA, Cohen LG. Mechanisms underlying functional changes in the primary motor cortex ipsilateral to an active hand. J Neurosci. 2008;28:5631–40.

    Article  PubMed  CAS  Google Scholar 

  56. Kennedy NC, Carson RG. The effect of simultaneous contractions of ipsilateral muscles on changes in corticospinal excitability induced by paired associative stimulation (PAS). Neurosci Lett. 2008;445:7–11.

    Article  PubMed  CAS  Google Scholar 

  57. Liepert J, Storch P, Fritsch A, Weiller C. Motor cortex disinhibition in acute stroke. Clin Neurophysiol. 2000;111:671–6.

    Article  PubMed  CAS  Google Scholar 

  58. Bütefisch CM, Netz J, Wessling M, Seitz RJ, Hömberg V. Remote changes in cortical excitability after stroke. Brain. 2003;126:470–81.

    Article  PubMed  Google Scholar 

  59. Schiene K, Bruehl C, Zilles K, Qü M, Hagemann G, Kraemer M, Witte OW. Neuronal hyperexcitability and reduction of GABAA-receptor expression in the surround of cerebral photothrombosis. J Cereb Blood Flow Metab. 1996;16:906–14.

    Article  PubMed  CAS  Google Scholar 

  60. Stinear JW, Byblow WD. Disinhibition in the human motor cortex is enhanced by synchronous upper limb movements. J Physiol. 2002;543:307–16.

    Article  PubMed  CAS  Google Scholar 

  61. Weinrich M, Wise SP. The premotor cortex of the monkey. J Neurosci. 1982;2:1329–45.

    PubMed  CAS  Google Scholar 

  62. Wise SP. The primate premotor cortex: past, present, and preparatory. Annu Rev Neurosci. 1985;8:1–19.

    Article  PubMed  CAS  Google Scholar 

  63. Seitz RJ, Kleiser R, Bütefisch CM, Jörgens S, Neuhaus O, Hartung HP, et al. Bimanual recoupling by visual cueing in callosal disconnection. Neurocase. 2004;10:316–25.

    Article  PubMed  Google Scholar 

  64. Bestmann S, Swayne O, Blankenburg F, Ruff CC, Teo J, Weiskopf N, et al. The role of contralesional dorsal premotor cortex after stroke as studied with concurrent TMS-fMRI. J Neurosci. 2010;30:11926–37.

    Article  PubMed  CAS  Google Scholar 

  65. Kantak SS, Stinear JW, Buch ER, Cohen LG. Rewiring the brain: potential role of the premotor cortex in motor control, learning, and recovery of function following brain injury. Neurorehabil Neural Repair. 2012;26:282–92.

    Article  PubMed  Google Scholar 

  66. Potempa K, Braun LT, Tinknell T, Popovich J. Benefits of aerobic exercise after stroke. Sports Med. 1996;21:337–46.

    Article  PubMed  CAS  Google Scholar 

  67. Eich HJ, Mach H, Werner C, Hesse S. Aerobic treadmill plus Bobath walking training improves walking in subacute stroke: a randomized controlled trial. Clin Rehabil. 2004;18:640–51.

    Article  PubMed  Google Scholar 

  68. Kluding P, Billinger SA. Exercise-induced changes of the upper extremity in chronic stroke survivors. Top Stroke Rehabil. 2005;12:58–68.

    PubMed  Google Scholar 

  69. MacKay-Lyons MJ, Howlett J. Exercise capacity and cardiovascular adaptations to aerobic training early after stroke. Top Stroke Rehabil. 2005;12:31–44.

    Article  PubMed  Google Scholar 

  70. Ploughman M, Attwood Z, White N, Doré JJ, Corbett D. Endurance exercise facilitates relearning of forelimb motor skill after focal ischemia. Eur J Neurosci. 2007;25:3453–60.

    Article  PubMed  Google Scholar 

  71. Ploughman M, McCarthy J, Bossé M, Sullivan HJ, Corbett D. Does treadmill exercise improve performance of cognitive or upper-extremity tasks in people with chronic stroke? A randomized cross-over trial. Arch Phys Med Rehabil. 2008;89:2041–7.

    Article  PubMed  Google Scholar 

  72. Tang A, Sibley KM, Thomas SG, Bayley MT, Richardson D, McIlroy WE, et al. Effects of an aerobic exercise program on aerobic capacity, spatiotemporal gait parameters, and functional capacity in subacute stroke. Neurorehabil Neural Repair. 2009;23:398–406.

    PubMed  Google Scholar 

  73. Lindsay MP, Gubitz G, Bayley M, Hill MD, Davies-Schinkel C, Singh S, Phillips S. Canadian best practice recommendations for stroke care (update 2010). On behalf of the Canadian Stroke Strategy Best Practices and Standards Writing Group. Ottawa, ON: Canadian Stroke Network; 2010. http://www.strokebestpractices.ca/wp-content/uploads/2011/04/2010BPR_ENG.pdf

  74. Billinger SA, Tseng BY, Kluding PM. Modified total-body recumbent stepper exercise test for assessing peak oxygen consumption in people with chronic stroke. Phys Ther. 2008;88:1188–95.

    Article  PubMed  Google Scholar 

  75. Katz-Leurer M, Sender I, Keren O, Dvir Z. The influence of early cycling training on balance in stroke patients at the subacute stage. Results of a preliminary trial. Clin Rehabil. 2006;20:398–405.

    Article  PubMed  Google Scholar 

  76. Sibley KM, Tang A, Brooks D, Brown DA, McIlroy WE. Feasibility of adapted aerobic cycle ergometry tasks to encourage paretic limb use after stroke: a case series. J Neurol Phys Ther. 2008;32:80–7.

    Article  PubMed  Google Scholar 

  77. Gebruers N, Vanroy C, Truijen S, Engelborghs S, De Deyn PP. Monitoring of physical activity after stroke: a systematic review of accelerometry-based measures. Arch Phys Med Rehabil. 2010;91:288–97.

    Article  PubMed  Google Scholar 

  78. Prajapati SK, Gage WH, Brooks D, Black SE, McIlroy WE. A novel approach to ambulatory monitoring: investigation into the quantity and control of everyday walking in patients with subacute stroke. Neurorehabil Neural Repair. 2011;2:6–14.

    Google Scholar 

  79. Dobkin BH, Xu X, Batalin M, Thomas S, Kaiser W. Reliability and validity of bilateral ankle accelerometer algorithms for activity recognition and walking speed after stroke. Stroke. 2011;42:2246–50.

    Article  PubMed  Google Scholar 

  80. Tang A, Marzolini S, Oh P, McIlroy WE, Brooks D. Feasibility and effects of adapted cardiac rehabilitation after stroke: a prospective trial. BMC Neurol. 2010;10:40.

    Article  PubMed  Google Scholar 

  81. Tang A, Closson V, Marzolini S, Oh P, McIlroy W, Brooks D. Cardiac rehabilitation after stroke-need and opportunity. J Cardiopulm Rehabil Prev. 2009;29:97–104.

    PubMed  Google Scholar 

  82. Kautz SA, Duncan PW, Perera S, Neptune RR, Studenski SA. Coordination of hemiparetic locomotion after stroke rehabilitation. Neurorehabil Neural Repair. 2005;19:250–8.

    Article  PubMed  Google Scholar 

  83. Taub E, Uswatte G, Elbert T. New treatments in neurorehabilitation founded on basic research. Nat Rev Neurosci. 2002;3:228–36.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Richard Staines Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Staines, W.R., Bolton, D.A.E., McIlroy, W.E. (2014). Sensorimotor Control After Stroke. In: Schweizer, T., Macdonald, R. (eds) The Behavioral Consequences of Stroke. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7672-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7672-6_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7671-9

  • Online ISBN: 978-1-4614-7672-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics