Skip to main content

Adipokines: Soluble Factors from Adipose Tissue Implicated in Cancer

  • Chapter
  • First Online:
Adipose Tissue and Cancer

Abstract

There is strong evidence for the association between obesity and cancer. Several retrospective and prospective observational studies have demonstrated that obesity and adiposity are independent risk factors for different types of cancer in both genders. According to a recent meta-analysis, a body mass index equal of higher than 40 kg/m2 determines a relative risk for the development of all cancers equal to 1.52 for males and 1.88 for females.

The adipose tissues secretes several hormones, cytokines (named adipokines), inflammatory cytokines, factors related to complement and fibrinolysis, fatty acids, and enzymes. An increase in adiposity alters the homeostasis of those substances secreted by the adipose tissue and others (such as insulin and insulin-like growth factors). The pathophysiological bases of obesity-related cancer can be explained by alterations in adipokines levels, increase in insulin resistance, changes towards a proinflammatory state, and other effects such as increased oxidative stress.

Leptin and adiponectin are the most abundant adipokines, and both play a major role in the pathogenesis of obesity-related cancer. In this chapter, the role of adipokines in the pathogenesis of obesity-related cancer, with emphasis on leptin and adiponectin, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organisation. Obesity and overweight. Fact Sheet No. 311. 2012.

    Google Scholar 

  2. Renehan AG, Roberts DL, Dive C. Obesity and cancer: pathophysiological and biological mechanisms. Arch Physiol Biochem. 2008;114(1):71–83.

    Article  PubMed  CAS  Google Scholar 

  3. Bergström A et al. Overweight as an avoidable cause of cancer in Europe. Int J Cancer. 2001;91(3):421–30.

    Article  PubMed  Google Scholar 

  4. IARC. Weight control and physical activity. IARC handbook of cancer prevention, vol. 6. Lyon: IARC Press; 2002.

    Google Scholar 

  5. Wiseman M. The Second World Cancer Research Fund/American Institute for Cancer Research expert report. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Proc Nutr Soc. 2008;67(03):253–6.

    Article  PubMed  Google Scholar 

  6. Reeves GK et al. Cancer incidence and mortality in relation to body mass index in the Million Women Study: cohort study. BMJ. 2007;335(7630):1134.

    Article  PubMed  Google Scholar 

  7. Harriss DJ et al. Lifestyle factors and colorectal cancer risk (1): systematic review and meta-analysis of associations with body mass index. Colorectal Dis. 2009;11(6):547–63.

    Article  PubMed  CAS  Google Scholar 

  8. Larsson SC, Wolk A. Obesity and colon and rectal cancer risk: a meta-analysis of prospective studies. Am J Clin Nutr. 2007;86(3):556–65.

    PubMed  CAS  Google Scholar 

  9. Moghaddam AA, Woodward M, Huxley R. Obesity and risk of colorectal cancer: a meta-analysis of 31 studies with 70,000 events. Cancer Epidemiol Biomarkers Prev. 2007;16(12):2533–47.

    Article  PubMed  Google Scholar 

  10. Dai Z, Xu YC, Niu L. Obesity and colorectal cancer risk: a meta-analysis of cohort studies. World J Gastroenterol. 2007;13(31):4199–206.

    PubMed  Google Scholar 

  11. Larsson SC, Wolk A. Obesity and the risk of gallbladder cancer: a meta-analysis. Br J Cancer. 2007;96(9):1457–61.

    PubMed  CAS  Google Scholar 

  12. Larsson SC, Wolk A. Overweight, obesity and risk of liver cancer: a meta-analysis of cohort studies. Br J Cancer. 2007;97(7):1005–8.

    PubMed  CAS  Google Scholar 

  13. Saunders D et al. Systematic review: the association between obesity and hepatocellular carcinoma—epidemiological evidence. Aliment Pharmacol Ther. 2010;31(10):1051–63.

    PubMed  CAS  Google Scholar 

  14. Mathew A, George PS, Ildaphonse G. Obesity and kidney cancer risk in women: a meta-analysis (1992–2008). Asian Pac J Cancer Prev. 2009;10(3):471–8.

    PubMed  Google Scholar 

  15. Ildaphonse G, George PS, Mathew A. Obesity and kidney cancer risk in men: a meta-analysis (1992–2008). Asian Pac J Cancer Prev. 2009;10(2):279–86.

    PubMed  Google Scholar 

  16. Stolzenberg-Solomon RZ et al. Adiposity, physical activity, and pancreatic cancer in the National Institutes of Health–AARP Diet and Health Cohort. Am J Epidemiol. 2008;167(5):586–97.

    Article  PubMed  Google Scholar 

  17. Arslan AA et al. Anthropometric measures, body mass index, and pancreatic cancer: a pooled analysis from the Pancreatic Cancer Cohort Consortium (PanScan). Arch Intern Med. 2010;170(9):791–802.

    Article  PubMed  Google Scholar 

  18. Olsen CM et al. Obesity and the risk of epithelial ovarian cancer: a systematic review and meta-analysis. Eur J Cancer. 2007;43(4):690–709.

    Article  PubMed  Google Scholar 

  19. Purdie DM et al. Body size and ovarian cancer: case–control study and systematic review (Australia). Cancer Causes Control. 2001;12(9):855–63.

    Article  PubMed  CAS  Google Scholar 

  20. Suzuki R et al. Body weight and incidence of breast cancer defined by estrogen and progesterone receptor status—a meta-analysis. Int J Cancer. 2009;124(3):698–712.

    Article  PubMed  CAS  Google Scholar 

  21. MacInnis R, English D. Body size and composition and prostate cancer risk: systematic review and meta-regression analysis. Cancer Causes Control. 2006;17(8):989–1003.

    Article  PubMed  Google Scholar 

  22. Larsson SC, Wolk A. Body mass index and risk of multiple myeloma: a meta-analysis. Int J Cancer. 2007;121(11):2512–6.

    Article  PubMed  CAS  Google Scholar 

  23. Larsson SC, Wolk A. Obesity and risk of non-Hodgkin’s lymphoma: a meta-analysis. Int J Cancer. 2007;121(7):1564–70.

    Article  PubMed  CAS  Google Scholar 

  24. Calle EE et al. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348(17):1625–38.

    Article  PubMed  Google Scholar 

  25. Roberts DL, Dive C, Renehan AG. Biological mechanisms linking obesity and cancer risk: new perspectives. Annu Rev Med. 2010;61(1):301–16.

    Article  PubMed  CAS  Google Scholar 

  26. Sjöström L et al. Effects of bariatric surgery on cancer incidence in obese patients in Sweden (Swedish Obese Subjects Study): a prospective, controlled intervention trial. Lancet Oncol. 2009;10(7):653–62.

    Article  PubMed  Google Scholar 

  27. Melmed S, Polonsky KS, Larsen PR, Kronberg HM. Williams text book of endocrinology. 12th ed. Orlando, FL: W.B. Saunders; 2011.

    Google Scholar 

  28. Maeda K, Okubo K, Shimomura I, Mizuno K, Matsuzawa Y, Matsubara K. Analysis of an expression profile of genes in the human adipose tissue. Gene. 1997;190:227–35.

    Article  PubMed  CAS  Google Scholar 

  29. Calzada MJ, del Peso L. Hypoxia-inducible factors and cancer. Clin Transl Oncol. 2007;9(5):278–89.

    Article  PubMed  CAS  Google Scholar 

  30. Garofalo C, Surmacz E. Leptin and cancer. J Cell Physiol. 2006;207(1):12–22.

    Article  PubMed  CAS  Google Scholar 

  31. Paz-Filho G et al. Associations between adipokines and obesity-related cancer. Front Biosci. 2011;16:1634–50.

    Article  PubMed  CAS  Google Scholar 

  32. Kelesidis T et al. Narrative review: the role of leptin in human physiology: emerging clinical applications. Ann Intern Med. 2010;152(2):93–100.

    Article  PubMed  Google Scholar 

  33. Boguszewski CL, Paz-Filho G, Velloso LA. Neuroendocrine body weight regulation: integration between fat tissue, gastrointestinal tract, and the brain. Endokrynol Pol. 2010;61(2):194–206.

    PubMed  CAS  Google Scholar 

  34. Fruhbeck G. Intracellular signalling pathways activated by leptin. Biochem J. 2006;393(Pt 1):7–20.

    PubMed  CAS  Google Scholar 

  35. Baicy K et al. Leptin replacement alters brain response to food cues in genetically leptin-deficient adults. Proc Natl Acad Sci USA. 2007;104(46):18276–9.

    Article  PubMed  CAS  Google Scholar 

  36. Farooqi IS et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest. 2002;110(8):1093–103.

    PubMed  CAS  Google Scholar 

  37. Licinio J et al. Phenotypic effects of leptin replacement on morbid obesity, diabetes mellitus, hypogonadism, and behavior in leptin-deficient adults. Proc Natl Acad Sci USA. 2004;101(13):4531–6.

    Article  PubMed  CAS  Google Scholar 

  38. Matochik JA et al. Effect of leptin replacement on brain structure in genetically leptin-deficient adults. J Clin Endocrinol Metab. 2005;90(5):2851–4.

    Article  PubMed  CAS  Google Scholar 

  39. Paz-Filho G et al. Changes in insulin sensitivity during leptin replacement therapy in leptin-deficient patients. Am J Physiol Endocrinol Metab. 2008;295(6):E1401–8.

    Article  PubMed  CAS  Google Scholar 

  40. Paz-Filho GJ et al. Leptin replacement improves cognitive development. PLoS One. 2008;3(8):e3098.

    Article  PubMed  CAS  Google Scholar 

  41. Bouloumie A et al. Leptin, the product of Ob gene, promotes angiogenesis. Circ Res. 1998;83(10):1059–66.

    Article  PubMed  CAS  Google Scholar 

  42. Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr. 2004;92(3):347–55.

    Article  PubMed  CAS  Google Scholar 

  43. Sierra-Honigmann MR et al. Biological action of leptin as an angiogenic factor. Science. 1998;281(5383):1683–6.

    Article  PubMed  CAS  Google Scholar 

  44. Hsing AW, Sakoda LC, Chua Jr S. Obesity, metabolic syndrome, and prostate cancer. Am J Clin Nutr. 2007;86(3):s843–57.

    PubMed  Google Scholar 

  45. Li H et al. A 25-year prospective study of plasma adiponectin and leptin concentrations and prostate cancer risk and survival. Clin Chem. 2010;56(1):34–43.

    Article  PubMed  CAS  Google Scholar 

  46. Ribeiro R et al. Overexpressing leptin genetic polymorphism (−2548 G/A) is associated with susceptibility to prostate cancer and risk of advanced disease. Prostate. 2004;59(3):268–74.

    Article  PubMed  CAS  Google Scholar 

  47. Freedland SJ, Platz EA. Obesity and prostate cancer: making sense out of apparently conflicting data. Epidemiol Rev. 2007;29:88–97.

    Article  PubMed  Google Scholar 

  48. Frankenberry KA et al. Leptin induces cell migration and the expression of growth factors in human prostate cancer cells. Am J Surg. 2004;188(5):560–5.

    Article  PubMed  CAS  Google Scholar 

  49. Somasundar P et al. Prostate cancer cell proliferation is influenced by leptin. J Surg Res. 2004;118(1):71–82.

    Article  PubMed  CAS  Google Scholar 

  50. Onuma M et al. Prostate cancer cell-adipocyte interaction: leptin mediates androgen-independent prostate cancer cell proliferation through c-Jun NH2-terminal kinase. J Biol Chem. 2003;278(43):42660–7.

    Article  PubMed  CAS  Google Scholar 

  51. Somasundar P et al. Differential effects of leptin on cancer in vitro. J Surg Res. 2003;113(1):50–5.

    Article  PubMed  CAS  Google Scholar 

  52. Park HY et al. Potential role of leptin in angiogenesis: leptin induces endothelial cell proliferation and expression of matrix metalloproteinases in vivo and in vitro. Exp Mol Med. 2001;33(2):95–102.

    Article  PubMed  CAS  Google Scholar 

  53. Vona-Davis L, Rose DP. Adipokines as endocrine, paracrine, and autocrine factors in breast cancer risk and progression. Endocr Relat Cancer. 2007;14(2):189–206.

    Article  PubMed  CAS  Google Scholar 

  54. Maccio A et al. Correlation of body mass index and leptin with tumor size and stage of disease in hormone-dependent postmenopausal breast cancer: preliminary results and therapeutic implications. J Mol Med. 2010;88(7):677–86.

    Article  PubMed  CAS  Google Scholar 

  55. Rose DP, Komninou D, Stephenson GD. Obesity, adipocytokines, and insulin resistance in breast cancer. Obes Rev. 2004;5(3):153–65.

    Article  PubMed  CAS  Google Scholar 

  56. Cirillo D et al. Leptin signaling in breast cancer: an overview. J Cell Biochem. 2008;105(4):956–64.

    Article  PubMed  CAS  Google Scholar 

  57. Brown KA, Simpson ER. Obesity and breast cancer: progress to understanding the relationship. Cancer Res. 2010;70(1):4–7.

    Article  PubMed  CAS  Google Scholar 

  58. Castellucci M et al. Leptin modulates extracellular matrix molecules and metalloproteinases: possible implications for trophoblast invasion. Mol Hum Reprod. 2000;6(10):951–8.

    Article  PubMed  CAS  Google Scholar 

  59. Garofalo C et al. Increased expression of leptin and the leptin receptor as a marker of breast cancer progression: possible role of obesity-related stimuli. Clin Cancer Res. 2006;12(5):1447–53.

    Article  PubMed  CAS  Google Scholar 

  60. Terrasi M et al. Functional analysis of the -2548G/A leptin gene polymorphism in breast cancer cells. Int J Cancer. 2009;125(5):1038–44.

    Article  PubMed  CAS  Google Scholar 

  61. Revillion F et al. Messenger RNA expression of leptin and leptin receptors and their prognostic value in 322 human primary breast cancers. Clin Cancer Res. 2006;12(7 Pt 1):2088–94.

    Article  PubMed  CAS  Google Scholar 

  62. Cleary MP et al. Genetically obese MMTV-TGF-alpha/Lep(ob)Lep(ob) female mice do not develop mammary tumors. Breast Cancer Res Treat. 2003;77(3):205–15.

    Article  PubMed  CAS  Google Scholar 

  63. Cleary MP et al. Leptin receptor-deficient MMTV-TGF-alpha/Lepr(db)Lepr(db) female mice do not develop oncogene-induced mammary tumors. Exp Biol Med (Maywood). 2004;229(2):182–93.

    CAS  Google Scholar 

  64. Yan D et al. Leptin-induced epithelial-mesenchymal transition in breast cancer cells requires β-catenin activation via Akt/GSK3- and MTA1/Wnt1 protein-dependent pathways. J Biol Chem. 2012;287(11):8598–612.

    Article  PubMed  CAS  Google Scholar 

  65. Park J, Scherer PE. Leptin and cancer: from cancer stem cells to metastasis. Endocr Relat Cancer. 2011;18(4):C25–9.

    Article  PubMed  CAS  Google Scholar 

  66. Stattin P et al. Obesity and colon cancer: does leptin provide a link? Int J Cancer. 2004;109(1):149–52.

    Article  PubMed  CAS  Google Scholar 

  67. Stattin P et al. Plasma leptin and colorectal cancer risk: a prospective study in Northern Sweden. Oncol Rep. 2003;10(6):2015–21.

    PubMed  Google Scholar 

  68. Tamakoshi K et al. Leptin is associated with an increased female colorectal cancer risk: a nested case–control study in Japan. Oncology. 2005;68(4–6):454–61.

    Article  PubMed  CAS  Google Scholar 

  69. Nakajima TE et al. Adipocytokines as new promising markers of colorectal tumors: adiponectin for colorectal adenoma, and resistin and visfatin for colorectal cancer. Cancer Sci. 2010;101(5):1286–91.

    Article  PubMed  CAS  Google Scholar 

  70. Tessitore L et al. Leptin expression in colorectal and breast cancer patients. Int J Mol Med. 2000;5(4):421–6.

    PubMed  CAS  Google Scholar 

  71. Kumor A et al. Serum leptin, adiponectin, and resistin concentration in colorectal adenoma and carcinoma (CC) patients. Int J Colorectal Dis. 2009;24(3):275–81.

    Article  PubMed  Google Scholar 

  72. Bolukbas FF et al. Serum leptin concentration and advanced gastrointestinal cancers: a case controlled study. BMC Cancer. 2004;4:29.

    Article  PubMed  CAS  Google Scholar 

  73. Koda M et al. Expression of the obesity hormone leptin and its receptor correlates with hypoxia-inducible factor-1 alpha in human colorectal cancer. Ann Oncol. 2007;18 Suppl 6:vi116–9.

    Article  PubMed  Google Scholar 

  74. Paik SS et al. Leptin expression correlates with favorable clinicopathologic phenotype and better prognosis in colorectal adenocarcinoma. Ann Surg Oncol. 2009;16(2):297–303.

    Article  PubMed  Google Scholar 

  75. Koda M et al. Overexpression of the obesity hormone leptin in human colorectal cancer. J Clin Pathol. 2007;60(8):902–6.

    Article  PubMed  Google Scholar 

  76. Hardwick JC et al. Leptin is a growth factor for colonic epithelial cells. Gastroenterology. 2001;121(1):79–90.

    Article  PubMed  CAS  Google Scholar 

  77. Uddin S et al. Leptin receptor expression in Middle Eastern colorectal cancer and its potential clinical implication. Carcinogenesis. 2009;30(11):1832–40.

    Article  PubMed  CAS  Google Scholar 

  78. Ogunwobi OO, Beales IL. The anti-apoptotic and growth stimulatory actions of leptin in human colon cancer cells involves activation of JNK mitogen activated protein kinase, JAK2 and PI3 kinase/Akt. Int J Colorectal Dis. 2007;22(4):401–9.

    Article  PubMed  Google Scholar 

  79. Fenton JI et al. Leptin, insulin-like growth factor-1, and insulin-like growth factor-2 are mitogens in ApcMin/+ but not Apc+/+ colonic epithelial cell lines. Cancer Epidemiol Biomarkers Prev. 2005;14(7):1646–52.

    Article  PubMed  CAS  Google Scholar 

  80. Aparicio T et al. Leptin stimulates the proliferation of human colon cancer cells in vitro but does not promote the growth of colon cancer xenografts in nude mice or intestinal tumorigenesis in Apc(Min/+) mice. Gut. 2005;54(8):1136–45.

    Article  PubMed  CAS  Google Scholar 

  81. Ealey KN, Lu S, Archer MC. Development of aberrant crypt foci in the colons of ob/ob and db/db mice: evidence that leptin is not a promoter. Mol Carcinog. 2008;47(9):667–77.

    Article  PubMed  CAS  Google Scholar 

  82. Liu Z et al. High fat diet enhances colonic cell proliferation and carcinogenesis in rats by elevating serum leptin. Int J Oncol. 2001;19(5):1009–14.

    PubMed  CAS  Google Scholar 

  83. Engeland A et al. Body size and thyroid cancer in two million Norwegian men and women. Br J Cancer. 2006;95(3):366–70.

    Article  PubMed  CAS  Google Scholar 

  84. Clavel-Chapelon F et al. Risk of differentiated thyroid cancer in relation to adult weight, height and body shape over life: the French E3N cohort. Int J Cancer. 2010;126(12):2984–90.

    PubMed  CAS  Google Scholar 

  85. Leitzmann MF et al. Prospective study of body mass index, physical activity and thyroid cancer. Int J Cancer. 2010;126(12):2947–56.

    PubMed  CAS  Google Scholar 

  86. Akinci M et al. Leptin levels in thyroid cancer. Asian J Surg. 2009;32(4):216–23.

    Article  PubMed  Google Scholar 

  87. Nowak KW et al. Rat thyroid gland expresses the long form of leptin receptors, and leptin stimulates the function of the gland in euthyroid non-fasted animals. Int J Mol Med. 2002;9(1):31–4.

    PubMed  CAS  Google Scholar 

  88. Cheng SP et al. Clinicopathologic significance of leptin and leptin receptor expressions in papillary thyroid carcinoma. Surgery. 2010;147(6):847–53.

    Article  PubMed  Google Scholar 

  89. Uddin S et al. Leptin-R and its association with PI3K/AKT signaling pathway in papillary thyroid carcinoma. Endocr Relat Cancer. 2010;17(1):191–202.

    Article  PubMed  CAS  Google Scholar 

  90. Cheng SP et al. Differential roles of leptin in regulating cell migration in thyroid cancer cells. Oncol Rep. 2010;23(6):1721–7.

    PubMed  CAS  Google Scholar 

  91. Spyridopoulos TN et al. Inverse association of leptin levels with renal cell carcinoma: results from a case–control study. Hormones (Athens). 2009;8(1):39–46.

    Google Scholar 

  92. Horiguchi A et al. Increased serum leptin levels and over expression of leptin receptors are associated with the invasion and progression of renal cell carcinoma. J Urol. 2006;176(4 Pt 1):1631–5.

    Article  PubMed  CAS  Google Scholar 

  93. Horiguchi A et al. Leptin promotes invasiveness of murine renal cancer cells via extracellular signal-regulated kinases and rho dependent pathway. J Urol. 2006;176(4 Pt 1):1636–41.

    Article  PubMed  CAS  Google Scholar 

  94. Li L et al. Concomitant activation of the JAK/STAT3 and ERK1/2 signaling is involved in leptin-mediated proliferation of renal cell carcinoma Caki-2 cells. Cancer Biol Ther. 2008;7(11):1787–92.

    Article  PubMed  CAS  Google Scholar 

  95. Petridou E et al. Leptin and body mass index in relation to endometrial cancer risk. Ann Nutr Metab. 2002;46(3–4):147–51.

    Article  PubMed  CAS  Google Scholar 

  96. Yuan SS et al. Aberrant expression and possible involvement of the leptin receptor in endometrial cancer. Gynecol Oncol. 2004;92(3):769–75.

    Article  PubMed  CAS  Google Scholar 

  97. Cymbaluk A, Chudecka-Glaz A, Rzepka-Gorska I. Leptin levels in serum depending on body mass index in patients with endometrial hyperplasia and cancer. Eur J Obstet Gynecol Reprod Biol. 2008;136(1):74–7.

    Article  PubMed  CAS  Google Scholar 

  98. Koshiba H et al. Progesterone inhibition of functional leptin receptor mRNA expression in human endometrium. Mol Hum Reprod. 2001;7(6):567–72.

    Article  PubMed  CAS  Google Scholar 

  99. Koda M et al. Expression of leptin, leptin receptor, and hypoxia-inducible factor 1 alpha in human endometrial cancer. Ann N Y Acad Sci. 2007;1095:90–8.

    Article  PubMed  CAS  Google Scholar 

  100. Sharma D et al. Leptin promotes the proliferative response and invasiveness in human endometrial cancer cells by activating multiple signal-transduction pathways. Endocr Relat Cancer. 2006;13(2):629–40.

    Article  PubMed  CAS  Google Scholar 

  101. Catalano S et al. Evidence that leptin through STAT and CREB signaling enhances cyclin D1 expression and promotes human endometrial cancer proliferation. J Cell Physiol. 2009;218(3):490–500.

    Article  PubMed  CAS  Google Scholar 

  102. Carino C et al. Leptin regulation of proangiogenic molecules in benign and cancerous endometrial cells. Int J Cancer. 2008;123(12):2782–90.

    Article  PubMed  CAS  Google Scholar 

  103. Pezzilli R et al. Serum leptin, but not adiponectin and receptor for advanced glycation end products, is able to distinguish autoimmune pancreatitis from both chronic pancreatitis and pancreatic neoplasms. Scand J Gastroenterol. 2010;45(1):93–9.

    Article  PubMed  CAS  Google Scholar 

  104. Dalamaga M et al. Low circulating adiponectin and resistin, but not leptin, levels are associated with multiple myeloma risk: a case–control study. Cancer Causes Control. 2009;20(2):193–9.

    Article  PubMed  Google Scholar 

  105. Brown DR, Berkowitz DE, Breslow MJ. Weight loss is not associated with hyperleptinemia in humans with pancreatic cancer. J Clin Endocrinol Metab. 2001;86(1):162–6.

    Article  PubMed  CAS  Google Scholar 

  106. Zyromski NJ et al. Obesity potentiates the growth and dissemination of pancreatic cancer. Surgery. 2009;146(2):258–63.

    Article  PubMed  Google Scholar 

  107. Ahima RS. Adipose tissue as an endocrine organ. Obesity (Silver Spring). 2006;14 Suppl 5:242S–9.

    Article  CAS  Google Scholar 

  108. Wozniak SE et al. Adipose tissue: the new endocrine organ? A review article. Dig Dis Sci. 2009;54(9):1847–56.

    Article  PubMed  Google Scholar 

  109. Liu M, Liu F. Transcriptional and post-translational regulation of adiponectin. Biochem J. 2009;425(1):41–52.

    Article  PubMed  CAS  Google Scholar 

  110. Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev. 2005;26(3):439–51.

    Article  PubMed  CAS  Google Scholar 

  111. Brakenhielm E et al. Adiponectin-induced antiangiogenesis and antitumor activity involve caspase-mediated endothelial cell apoptosis. Proc Natl Acad Sci USA. 2004;101(8):2476–81.

    Article  PubMed  CAS  Google Scholar 

  112. Kelesidis I, Kelesidis T, Mantzoros CS. Adiponectin and cancer: a systematic review. Br J Cancer. 2006;94(9):1221–5.

    Article  PubMed  CAS  Google Scholar 

  113. Goktas S et al. Prostate cancer and adiponectin. Urology. 2005;65(6):1168–72.

    Article  PubMed  Google Scholar 

  114. Bub JD, Miyazaki T, Iwamoto Y. Adiponectin as a growth inhibitor in prostate cancer cells. Biochem Biophys Res Commun. 2006;340(4):1158–66.

    Article  PubMed  CAS  Google Scholar 

  115. Mantzoros C et al. Adiponectin and breast cancer risk. J Clin Endocrinol Metab. 2004;89(3):1102–7.

    Article  PubMed  CAS  Google Scholar 

  116. Cleary MP, Grossmann ME. Minireview: obesity and breast cancer: the estrogen connection. Endocrinology. 2009;150(6):2537–42.

    Article  PubMed  CAS  Google Scholar 

  117. Kim KY et al. Adiponectin-activated AMPK stimulates dephosphorylation of AKT through protein phosphatase 2A activation. Cancer Res. 2009;69(9):4018–26.

    Article  PubMed  CAS  Google Scholar 

  118. Lorincz AM, Sukumar S. Molecular links between obesity and breast cancer. Endocr Relat Cancer. 2006;13(2):279–92.

    Article  PubMed  CAS  Google Scholar 

  119. Lukanova A et al. Serum adiponectin is not associated with risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2006;15(2):401–2.

    Article  PubMed  CAS  Google Scholar 

  120. Wei EK et al. Low plasma adiponectin levels and risk of colorectal cancer in men: a prospective study. J Natl Cancer Inst. 2005;97(22):1688–94.

    Article  PubMed  CAS  Google Scholar 

  121. Otake S et al. Association of visceral fat accumulation and plasma adiponectin with colorectal adenoma: evidence for participation of insulin resistance. Clin Cancer Res. 2005;11(10):3642–6.

    Article  PubMed  CAS  Google Scholar 

  122. Yamaji T et al. Interaction between adiponectin and leptin influences the risk of colorectal adenoma. Cancer Res. 2010;70(13):5430–7.

    Article  PubMed  CAS  Google Scholar 

  123. Barb D et al. Adiponectin in relation to malignancies: a review of existing basic research and clinical evidence. Am J Clin Nutr. 2007;86(3):s858–66.

    PubMed  Google Scholar 

  124. Sugiyama M et al. Adiponectin inhibits colorectal cancer cell growth through the AMPK/mTOR pathway. Int J Oncol. 2009;34(2):339–44.

    PubMed  CAS  Google Scholar 

  125. Kim AY et al. Adiponectin represses colon cancer cell proliferation via AdipoR1- and -R2-mediated AMPK activation. Mol Endocrinol. 2010;24(7):1441–52.

    Article  PubMed  CAS  Google Scholar 

  126. Fenton JI et al. Adiponectin blocks multiple signaling cascades associated with leptin-induced cell proliferation in Apc Min/+ colon epithelial cells. Int J Cancer. 2008;122(11):2437–45.

    Article  PubMed  CAS  Google Scholar 

  127. Park JT et al. Insulin resistance and lower plasma adiponectin increase malignancy risk in nondiabetic continuous ambulatory peritoneal dialysis patients. Metabolism. 2011;60(1):121–6.

    Article  PubMed  CAS  Google Scholar 

  128. Pinthus JH et al. Lower plasma adiponectin levels are associated with larger tumor size and metastasis in clear-cell carcinoma of the kidney. Eur Urol. 2008;54(4):866–73.

    Article  PubMed  CAS  Google Scholar 

  129. Spyridopoulos TN et al. Low adiponectin levels are associated with renal cell carcinoma: a case–control study. Int J Cancer. 2007;120(7):1573–8.

    Article  PubMed  CAS  Google Scholar 

  130. Horiguchi A et al. Decreased serum adiponectin levels in patients with metastatic renal cell carcinoma. Jpn J Clin Oncol. 2008;38(2):106–11.

    Article  PubMed  Google Scholar 

  131. Soliman PT et al. Association between adiponectin, insulin resistance, and endometrial cancer. Cancer. 2006;106(11):2376–81.

    Article  PubMed  CAS  Google Scholar 

  132. Cust AE et al. Plasma adiponectin levels and endometrial cancer risk in pre- and postmenopausal women. J Clin Endocrinol Metab. 2007;92(1):255–63.

    Article  PubMed  CAS  Google Scholar 

  133. Dal Maso L et al. Circulating adiponectin and endometrial cancer risk. J Clin Endocrinol Metab. 2004;89(3):1160–3.

    Article  PubMed  CAS  Google Scholar 

  134. Takemura Y et al. Expression of adiponectin receptors and its possible implication in the human endometrium. Endocrinology. 2006;147(7):3203–10.

    Article  PubMed  CAS  Google Scholar 

  135. Cong L et al. Human adiponectin inhibits cell growth and induces apoptosis in human endometrial carcinoma cells, HEC-1-A and RL95 2. Endocr Relat Cancer. 2007;14(3):713–20.

    Article  PubMed  CAS  Google Scholar 

  136. Chang MC et al. Adiponectin as a potential differential marker to distinguish pancreatic cancer and chronic pancreatitis. Pancreas. 2007;35(1):16–21.

    Article  PubMed  CAS  Google Scholar 

  137. Dalamaga M et al. Pancreatic cancer expresses adiponectin receptors and is associated with hypoleptinemia and hyperadiponectinemia: a case–control study. Cancer Causes Control. 2009;20(5):625–33.

    Article  PubMed  Google Scholar 

  138. Stolzenberg-Solomon RZ et al. Prediagnostic adiponectin concentrations and pancreatic cancer risk in male smokers. Am J Epidemiol. 2008;168(9):1047–55.

    Article  PubMed  Google Scholar 

  139. Wolf I et al. Adiponectin, ghrelin, and leptin in cancer cachexia in breast and colon cancer patients. Cancer. 2006;106(4):966–73.

    Article  PubMed  CAS  Google Scholar 

  140. Brichard SM, Delporte ML, Lambert M. Adipocytokines in anorexia nervosa: a review focusing on leptin and adiponectin. Horm Metab Res. 2003;35(6):337–42.

    Article  PubMed  CAS  Google Scholar 

  141. Garcea G et al. Role of inflammation in pancreatic carcinogenesis and the implications for future therapy. Pancreatology. 2005;5(6):514–29.

    Article  PubMed  CAS  Google Scholar 

  142. Chen J, Huang XF. Interleukin-6 promotes carcinogenesis through multiple signal pathways. Comment on: clinical significance of interleukin-6 gene polymorphism and IL-6 serum level in pancreatic adenocarcinoma and chronic pancreatitis. Dig Dis Sci. 2009;54(6):1373–4.

    Article  PubMed  Google Scholar 

  143. Villafuerte BC et al. Expressions of leptin and insulin-like growth factor-I are highly correlated and region-specific in adipose tissue of growing rats. Obes Res. 2000;8(9):646–55.

    Article  PubMed  CAS  Google Scholar 

  144. Kloting N et al. Autocrine IGF-1 action in adipocytes controls systemic IGF-1 concentrations and growth. Diabetes. 2008;57(8):2074–82.

    Article  PubMed  CAS  Google Scholar 

  145. Stull MA et al. Requirement for IGF-I in epidermal growth factor-mediated cell cycle progression of mammary epithelial cells. Endocrinology. 2002;143(5):1872–9.

    Article  PubMed  CAS  Google Scholar 

  146. Renehan AG et al. Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lancet. 2004;363(9418):1346–53.

    Article  PubMed  CAS  Google Scholar 

  147. Curat CA et al. Macrophages in human visceral adipose tissue: increased accumulation in obesity and a source of resistin and visfatin. Diabetologia. 2006;49(4):744–7.

    Article  PubMed  CAS  Google Scholar 

  148. Bi TQ, Che XM. Nampt/PBEF/visfatin and cancer. Cancer Biol Ther. 2010;10(2):119–25.

    Article  PubMed  CAS  Google Scholar 

  149. Kim JG et al. Visfatin stimulates proliferation of MCF-7 human breast cancer cells. Mol Cells. 2010;30(4):341–5.

    Article  PubMed  CAS  Google Scholar 

  150. Tan MJ et al. Emerging roles of angiopoietin-like 4 in human cancer. Mol Cancer Res. 2012;10(6):677–88.

    Article  PubMed  CAS  Google Scholar 

  151. Zhu P et al. Angiopoietin-like 4 protein elevates the prosurvival intracellular O2(−):H2O2 ratio and confers anoikis resistance to tumors. Cancer Cell. 2011;19(3):401–15.

    Article  PubMed  CAS  Google Scholar 

  152. Qi Y et al. Loss of resistin improves glucose homeostasis in leptin deficiency. Diabetes. 2006;55(11):3083–90.

    Article  PubMed  CAS  Google Scholar 

  153. Kim HJ et al. Expression of resistin in the prostate and its stimulatory effect on prostate cancer cell proliferation. BJU Int. 2011;108(2 Pt 2):E77–83.

    Article  PubMed  Google Scholar 

  154. Sun CA et al. Adipocytokine resistin and breast cancer risk. Breast Cancer Res Treat. 2010;123(3):869–76.

    Article  PubMed  CAS  Google Scholar 

  155. Tiaka EK et al. The implication of adiponectin and resistin in gastrointestinal diseases. Cytokine Growth Factor Rev. 2011;22(2):109–19.

    Article  PubMed  CAS  Google Scholar 

  156. Prieto-Hontoria PL et al. Role of obesity-associated dysfunctional adipose tissue in cancer: a molecular nutrition approach. Biochim Biophys Acta. 2011;1807(6):664–78.

    Article  PubMed  CAS  Google Scholar 

  157. Garcia-Diaz D et al. Adiposity dependent apelin gene expression: relationships with oxidative and inflammation markers. Mol Cell Biochem. 2007;305(1–2):87–94.

    Article  PubMed  CAS  Google Scholar 

  158. Tatemoto K et al. Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun. 1998;251(2):471–6.

    Article  PubMed  CAS  Google Scholar 

  159. Heo K et al. Hypoxia-induced up-regulation of apelin is associated with a poor prognosis in oral squamous cell carcinoma patients. Oral Oncol. 2012;48(6):500–6.

    Article  PubMed  CAS  Google Scholar 

  160. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444(7121):840–6.

    Article  PubMed  CAS  Google Scholar 

  161. Yang Q et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature. 2005;436(7049):356–62.

    Article  PubMed  CAS  Google Scholar 

  162. Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest. 2000;106(2):171–6.

    Article  PubMed  CAS  Google Scholar 

  163. Pisani P. Hyper-insulinaemia and cancer, meta-analyses of epidemiological studies. Arch Physiol Biochem. 2008;114(1):63–70.

    Article  PubMed  CAS  Google Scholar 

  164. Khandekar MJ, Cohen P, Spiegelman BM. Molecular mechanisms of cancer development in obesity. Nat Rev Cancer. 2011;11(12):886–95.

    Article  PubMed  CAS  Google Scholar 

  165. Jones RA et al. Transgenic overexpression of IGF-IR disrupts mammary ductal morphogenesis and induces tumor formation. Oncogene. 2006;26(11):1636–44.

    Article  PubMed  CAS  Google Scholar 

  166. Wu Y et al. Insulin-like growth factor-I regulates the liver microenvironment in obese mice and promotes liver metastasis. Cancer Res. 2010;70(1):57–67.

    Article  PubMed  CAS  Google Scholar 

  167. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883–99.

    Article  PubMed  CAS  Google Scholar 

  168. de Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development. Nat Rev Cancer. 2006;6(1):24–37.

    Article  PubMed  CAS  Google Scholar 

  169. Kern PA et al. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab. 2001;280(5):E745–51.

    PubMed  CAS  Google Scholar 

  170. Mohamed-Ali V et al. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-α, in vivo. J Clin Endocrinol Metab. 1997;82(12):4196–200.

    Article  PubMed  CAS  Google Scholar 

  171. Michalaki V et al. Serum levels of IL-6 and TNF-[alpha] correlate with clinicopathological features and patient survival in patients with prostate cancer. Br J Cancer. 2004;90(12):2312–6.

    PubMed  CAS  Google Scholar 

  172. Charles KA et al. The tumor-promoting actions of TNF-α involve TNFR1 and IL-17 in ovarian cancer in mice and humans. J Clin Invest. 2009;119(10):3011–23.

    Article  PubMed  CAS  Google Scholar 

  173. Karayiannakis AJ et al. Serum levels of tumor necrosis factor-alpha and nutritional status in pancreatic cancer patients. Anticancer Res. 2001;21(2B):1355–8.

    PubMed  CAS  Google Scholar 

  174. Shen C et al. Polymorphisms of tumor necrosis factor-alpha and breast cancer risk: a meta-analysis. Breast Cancer Res Treat. 2011;126(3):763–70.

    Article  PubMed  CAS  Google Scholar 

  175. Lu PH et al. Meta-analysis of association of tumor necrosis factor alpha-308 gene promoter polymorphism with gastric cancer. Zhonghua Yu Fang Yi Xue Za Zhi. 2010;44(3):209–14.

    PubMed  CAS  Google Scholar 

  176. Yang Y et al. The TNF-α, IL-1B and IL-10 polymorphisms and risk for hepatocellular carcinoma: a meta-analysis. J Cancer Res Clin Oncol. 2011;137(6):947–52.

    Article  PubMed  CAS  Google Scholar 

  177. Suganuma M et al. Essential role of tumor necrosis factor α (TNF-α) in tumor promotion as revealed by TNF-α-deficient mice. Cancer Res. 1999;59(18):4516–8.

    PubMed  CAS  Google Scholar 

  178. Park EJ et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell. 2010;140(2):197–208.

    Article  PubMed  CAS  Google Scholar 

  179. Sansone P et al. IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest. 2007;117(12):3988–4002.

    Article  PubMed  CAS  Google Scholar 

  180. Iliopoulos D, Hirsch HA, Struhl K. An epigenetic switch involving NF-κB, Lin28, Let-7 microRNA, and IL6 links inflammation to cell transformation. Cell. 2009;139(4):693–706.

    Article  PubMed  CAS  Google Scholar 

  181. Miller WR. Aromatase and the breast: regulation and clinical aspects. Maturitas. 2006;54(4):335–41.

    Article  PubMed  CAS  Google Scholar 

  182. Baird DT, Uno A, Melby JC. Adrenal secretion of androgens and oestrogens. J Endocrinol. 1969;45(1):135–6.

    Article  PubMed  CAS  Google Scholar 

  183. van Landeghem AAJ et al. Endogenous concentration and subcellular distribution of androgens in normal and malignant human breast tissue. Cancer Res. 1985;45(6):2907–12.

    PubMed  Google Scholar 

  184. Bernstein L, Ross RK. Endogenous hormones and breast cancer risk. Epidemiol Rev. 1993;15(1):48–65.

    PubMed  CAS  Google Scholar 

  185. Kaaks R et al. Postmenopausal serum androgens, oestrogens and breast cancer risk: the European prospective investigation into cancer and nutrition. Endocr Relat Cancer. 2005;12(4):1071–82.

    Article  PubMed  CAS  Google Scholar 

  186. Bardin A et al. Loss of ERβ expression as a common step in estrogen-dependent tumor progression. Endocr Relat Cancer. 2004;11(3):537–51.

    Article  PubMed  CAS  Google Scholar 

  187. Kaaks R, Lukanova A, Kurzer MS. Obesity, endogenous hormones, and endometrial cancer risk: a synthetic review. Epidemiol Biomarkers Prev. 2002;11(12):1531–43.

    CAS  Google Scholar 

  188. Trayhurn P, Wang B, Wood IS. Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity? Br J Nutr. 2008;100(2):227–35.

    Article  PubMed  CAS  Google Scholar 

  189. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331(6024):1559–64.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Licinio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Paz-Filho, G., Mishra, A.K., Licinio, J. (2013). Adipokines: Soluble Factors from Adipose Tissue Implicated in Cancer. In: Kolonin, M. (eds) Adipose Tissue and Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7660-3_5

Download citation

Publish with us

Policies and ethics