Metabolic Perturbations Associated with Adipose Tissue Dysfunction and the Obesity–Cancer Link

  • Nikki A. Ford
  • John DiGiovanni
  • Stephen D. Hursting


Nearly 35 % of adults and 20 % of children in the USA are obese, defined as a body mass index (BMI) ≥30 kg/m2. Obesity, which is accompanied by metabolic dysregulation often manifesting in the metabolic syndrome, is an established risk factor for many cancers. Within the growth-promoting, proinflammatory environment of the obese state, crosstalk between adipocytes, macrophages, and epithelial cells occurs via obesity-associated hormones, cytokines, and other mediators that may enhance cancer risk and/or progression. This chapter synthesizes the evidence on key biological mechanisms underlying the obesity–cancer link, with particular emphasis on the relative contributions of increased adiposity per se versus the obesity-associated enhancements in growth factor signaling, inflammation, and vascular integrity processes resulting from adipose tissue dysfunction. These interrelated pathways represent possible mechanistic targets for disrupting the obesity–cancer link.


Vascular Endothelial Growth Factor Metabolic Syndrome Fatty Liver Disease Obese State Adipocyte Hypertrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Flegal KM, Carroll MD, et al. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA. 2012;307(5):491–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Grassi G, Seravalle G, et al. Structural and functional alterations of subcutaneous small resistance arteries in severe human obesity. Obesity (Silver Spring). 2010;18(1):92–8.CrossRefGoogle Scholar
  3. 3.
    Gottschling-Zeller H, Birgel M, et al. Depot-specific release of leptin from subcutaneous and omental adipocytes in suspension culture: effect of tumor necrosis factor-alpha and transforming growth factor-beta1. Eur J Endocrinol. 1999;141(4):436–42.PubMedCrossRefGoogle Scholar
  4. 4.
    Ford ES, Li C, et al. Prevalence and correlates of metabolic syndrome based on a harmonious definition among adults in the US. J Diabetes. 2010;2(3):180–93.PubMedCrossRefGoogle Scholar
  5. 5.
    Carter JC, Church FC. Obesity and breast cancer: the roles of peroxisome proliferator-activated receptor-gamma and plasminogen activator inhibitor-1. PPAR Res. 2009;2009:345320.PubMedGoogle Scholar
  6. 6.
    Hursting SD, Berger NA. Energy balance, host-related factors, and cancer progression. J Clin Oncol. 2010;28(26):4058–65.PubMedCrossRefGoogle Scholar
  7. 7.
    Poirier P, Giles TD, et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss. Arterioscler Thromb Vasc Biol. 2006;26(5):968–76.PubMedCrossRefGoogle Scholar
  8. 8.
    Bluher M. Are there still healthy obese patients? Curr Opin Endocrinol Diabetes Obes. 2012;19(5):341–6.PubMedGoogle Scholar
  9. 9.
    Marques-Vidal P, Pecoud A, et al. Normal weight obesity: relationship with lipids, glycaemic status, liver enzymes and inflammation. Nutr Metab Cardiovasc Dis. 2010;20(9):669–75.PubMedCrossRefGoogle Scholar
  10. 10.
    AICR. World Cancer Research Fund/American Institute for Cancer Research. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Washington, DC: AICR; 2007.Google Scholar
  11. 11.
    Calle EE, Rodriguez C, et al. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348(17):1625–38.PubMedCrossRefGoogle Scholar
  12. 12.
    Stocks T, Borena W, et al. Cohort profile: the metabolic syndrome and cancer project (Me-Can). Int J Epidemiol. 2010;39(3):660–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Bjørndal B, Burri L, et al. Different adipose depots: their role in the development of metabolic syndrome and mitochondrial response to hypolipidemic agents. J Obes. 2011;2011:490650.PubMedCrossRefGoogle Scholar
  14. 14.
    Sun K, Kusminski CM, et al. Adipose tissue remodeling and obesity. J Clin Invest. 2011;121(6):2094–101.PubMedCrossRefGoogle Scholar
  15. 15.
    Wood IS, de Heredia FP, et al. Cellular hypoxia and adipose tissue dysfunction in obesity. Proc Nutr Soc. 2009;68(4):370–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Henry SL, Bensley JG, et al. White adipocytes: more than just fat depots. Int J Biochem Cell Biol. 2012;44(3):435–40.PubMedCrossRefGoogle Scholar
  17. 17.
    Anderson N, Borlak J. Molecular mechanisms and therapeutic targets in steatosis and steatohepatitis. Pharmacol Rev. 2008;60(3):311–57.PubMedCrossRefGoogle Scholar
  18. 18.
    Lee JS, Kim SH, et al. Clinical implications of fatty pancreas: correlations between fatty pancreas and metabolic syndrome. World J Gastroenterol. 2009;15(15):1869–75.PubMedCrossRefGoogle Scholar
  19. 19.
    Kotronen A, Westerbacka J, et al. Liver fat in the metabolic syndrome. J Clin Endocrinol Metab. 2007;92(9):3490–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Neuschwander-Tetri BA, Caldwell SH. Nonalcoholic steatohepatitis: summary of an AASLD Single Topic Conference. Hepatology. 2003;37(5):1202–19.PubMedCrossRefGoogle Scholar
  21. 21.
    Vanni E, Bugianesi E, et al. From the metabolic syndrome to NAFLD or vice versa? Dig Liver Dis. 2010;42(5):320–30.PubMedCrossRefGoogle Scholar
  22. 22.
    Adams LA, Lymp JF, et al. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology. 2005;129(1):113–21.PubMedCrossRefGoogle Scholar
  23. 23.
    Bellentani S, Marino M. Epidemiology and natural history of non-alcoholic fatty liver disease (NAFLD). Ann Hepatol. 2009;8 Suppl 1:S4–8.PubMedGoogle Scholar
  24. 24.
    Browning JD, Szczepaniak LS, et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology. 2004;40(6):1387–95.PubMedCrossRefGoogle Scholar
  25. 25.
    Charlton M. Nonalcoholic fatty liver disease: a review of current understanding and future impact. Clin Gastroenterol Hepatol. 2004;2(12):1048–58.PubMedCrossRefGoogle Scholar
  26. 26.
    Fraser A, Longnecker MP, et al. Prevalence of elevated alanine aminotransferase among US adolescents and associated factors: NHANES 1999-2004. Gastroenterology. 2007;133(6):1814–20.PubMedCrossRefGoogle Scholar
  27. 27.
    Lam B, Younossi ZM. Treatment options for nonalcoholic fatty liver disease. Therap Adv Gastroenterol. 2010;3(2):121–37.PubMedCrossRefGoogle Scholar
  28. 28.
    Amarapurkar D, Kamani P, et al. Prevalence of non-alcoholic fatty liver disease: population based study. Ann Hepatol. 2007;6(3):161–3.PubMedGoogle Scholar
  29. 29.
    Bedogni G, Miglioli L, et al. Prevalence of and risk factors for nonalcoholic fatty liver disease: the Dionysos nutrition and liver study. Hepatology. 2005;42(1):44–52.PubMedCrossRefGoogle Scholar
  30. 30.
    Zhou Y, Zheng S, et al. The interruption of the PDGF and EGF signaling pathways by curcumin stimulates gene expression of PPARgamma in rat activated hepatic stellate cell in vitro. Lab Invest. 2007;87(5):488–98.PubMedCrossRefGoogle Scholar
  31. 31.
    Zhou YJ, Li YY, et al. Prevalence of fatty liver disease and its risk factors in the population of South China. World J Gastroenterol. 2007;13(47):6419–24.PubMedCrossRefGoogle Scholar
  32. 32.
    Higuchi H, Gores GJ. Mechanisms of liver injury: an overview. Curr Mol Med. 2003;3(6):483–90.PubMedCrossRefGoogle Scholar
  33. 33.
    Day CP, James OF. Steatohepatitis: a tale of two “hits”? Gastroenterology. 1998;114(4):842–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Ip E, Farrell GC, et al. Central role of PPARalpha-dependent hepatic lipid turnover in dietary steatohepatitis in mice. Hepatology. 2003;38(1):123–32.PubMedCrossRefGoogle Scholar
  35. 35.
    Reddy JK, Rao MS. Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. Am J Physiol Gastrointest Liver Physiol. 2006;290(5):G852–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Cai D, Yuan M, et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med. 2005;11(2):183–90.PubMedCrossRefGoogle Scholar
  37. 37.
    Braun S, Bitton-Worms K, et al. The link between the metabolic syndrome and cancer. Int J Biol Sci. 2011;7(7):1003–15.PubMedCrossRefGoogle Scholar
  38. 38.
    Pollak M. Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer. 2008;8(12):915–28.PubMedCrossRefGoogle Scholar
  39. 39.
    Hursting SD, Smith SM, et al. Calories and cancer: the role of insulin-like growth factor-1. In: Leroith D, editor. The IGF system and cancer. New York: Springer; 2011. p. 231–43.Google Scholar
  40. 40.
    Wong KK, Engelman JA, et al. Targeting the PI3K signaling pathway in cancer. Curr Opin Genet Dev. 2010;20(1):87–90.PubMedCrossRefGoogle Scholar
  41. 41.
    Memmott RM, Dennis PA. Akt-dependent and -independent mechanisms of mTOR regulation in cancer. Cell Signal. 2009;21(5):656–64.PubMedCrossRefGoogle Scholar
  42. 42.
    Lindsley JE, Rutter J. Nutrient sensing and metabolic decisions. Comp Biochem Physiol B Biochem Mol Biol. 2004;139(4):543–59.PubMedCrossRefGoogle Scholar
  43. 43.
    Moore T, Beltran L, et al. Dietary energy balance modulates signaling through the Akt/mammalian target of rapamycin pathways in multiple epithelial tissues. Cancer Prev Res (Phila). 2008;1(1):65–76.CrossRefGoogle Scholar
  44. 44.
    De Angel RE, Conti CJ, et al. The enhancing effects of obesity on mammary tumor growth and Akt/mTOR pathway activation persist after weight loss and are reversed by RAD001. Mol Carcinog. 2013;52(6):446–58.PubMedCrossRefGoogle Scholar
  45. 45.
    Nogueira LM, Dunlap SM, Ford NA, Hursting SD. Calorie restriction and rapamycin inhibit MMTV-Wnt-1 mammary tumor growth in a mouse model of postmenopausal obesity. Endocr Relat Cancer. 2012;19(1):57–68.PubMedCrossRefGoogle Scholar
  46. 46.
    Anisimov VN. Metformin for aging and cancer prevention. Aging (Albany NY). 2010;2(11):760–74.Google Scholar
  47. 47.
    Athar M, Kopelovich L. Rapamycin and mTORC1 inhibition in the mouse: skin cancer prevention. Cancer Prev Res (Phila). 2011;4(7):957–61.CrossRefGoogle Scholar
  48. 48.
    Chaudhary SC, Kurundkar D, et al. Metformin, an antidiabetic agent reduces growth of cutaneous squamous cell carcinoma by targeting mTOR signaling pathway. Photochem Photobiol. 2012;88(5):1149–56.PubMedCrossRefGoogle Scholar
  49. 49.
    Checkley LA, Rho O, et al. Rapamycin is a potent inhibitor of skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate. Cancer Prev Res (Phila). 2011;4(7):1011–20.CrossRefGoogle Scholar
  50. 50.
    Tomimoto A, Endo H, et al. Metformin suppresses intestinal polyp growth in ApcMin/+ mice. Cancer Sci. 2008;99(11):2136–41.PubMedCrossRefGoogle Scholar
  51. 51.
    Gautron L, Elmquist JK. Sixteen years and counting: an update on leptin in energy balance. J Clin Invest. 2011;121(6):2087–93.PubMedCrossRefGoogle Scholar
  52. 52.
    Villanueva EC, Myers Jr MG. Leptin receptor signaling and the regulation of mammalian physiology. Int J Obes (Lond). 2008;32 Suppl 7:S8–12.CrossRefGoogle Scholar
  53. 53.
    Vaiopoulos AG, Marinou K, et al. The role of adiponectin in human vascular physiology. Int J Cardiol. 2012;155(2):188–93.PubMedCrossRefGoogle Scholar
  54. 54.
    Barb D, Williams CJ, et al. Adiponectin in relation to malignancies: a review of existing basic research and clinical evidence. Am J Clin Nutr. 2007;86(3):s858–66.PubMedGoogle Scholar
  55. 55.
    Stofkova A. Leptin and adiponectin: from energy and metabolic dysbalance to inflammation and autoimmunity. Endocr Regul. 2009;43(4):157–68.PubMedGoogle Scholar
  56. 56.
    Fenton JI, Hord NG, et al. Leptin, insulin-like growth factor-1, and insulin-like growth factor-2 are mitogens in ApcMin/+ but not Apc+/+ colonic epithelial cell lines. Cancer Epidemiol Biomarkers Prev. 2005;14(7):1646–52.PubMedCrossRefGoogle Scholar
  57. 57.
    Stattin P, Lukanova A, et al. Obesity and colon cancer: does leptin provide a link? Int J Cancer. 2004;109(1):149–52.PubMedCrossRefGoogle Scholar
  58. 58.
    Wu MH, Chou YC, et al. Circulating levels of leptin, adiposity and breast cancer risk. Br J Cancer. 2009;100(4):578–82.PubMedCrossRefGoogle Scholar
  59. 59.
    Grossmann ME, Nkhata KJ, et al. Effects of adiponectin on breast cancer cell growth and signaling. Br J Cancer. 2008;98(2):370–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Rzepka-Gorska I, Bedner R, et al. Serum adiponectin in relation to endometrial cancer and endometrial hyperplasia with atypia in obese women. Eur J Gynaecol Oncol. 2008;29(6):594–7.PubMedGoogle Scholar
  61. 61.
    Tian YF, Chu CH, et al. Anthropometric measures, plasma adiponectin, and breast cancer risk. Endocr Relat Cancer. 2007;14(3):669–77.PubMedCrossRefGoogle Scholar
  62. 62.
    Jung CH, Rhee EJ, et al. The relationship of adiponectin/leptin ratio with homeostasis model assessment insulin resistance index and metabolic syndrome in apparently healthy korean male adults. Korean Diabetes J. 2010;34(4):237–43.PubMedCrossRefGoogle Scholar
  63. 63.
    Labruna G, Pasanisi F, et al. High leptin/adiponectin ratio and serum triglycerides are associated with an “at-risk” phenotype in young severely obese patients. Obesity (Silver Spring). 2011;19(7):1492–6.CrossRefGoogle Scholar
  64. 64.
    Mirza S, Qu HQ, et al. Adiponectin/leptin ratio and metabolic syndrome in a Mexican American population. Clin Invest Med. 2011;34(5):E290.PubMedGoogle Scholar
  65. 65.
    Ashizawa N, Yahata T, et al. Serum leptin-adiponectin ratio and endometrial cancer risk in postmenopausal female subjects. Gynecol Oncol. 2010;119(1):65–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Chen DC, Chung YF, et al. Serum adiponectin and leptin levels in Taiwanese breast cancer patients. Cancer Lett. 2006;237(1):109–14.PubMedCrossRefGoogle Scholar
  67. 67.
    Cleary MP, Ray A, et al. Targeting the adiponectin:leptin ratio for postmenopausal breast cancer prevention. Front Biosci (Schol Ed). 2009;1:329–57.Google Scholar
  68. 68.
    Harvey AE, Lashinger LM, et al. The growing challenge of obesity and cancer: an inflammatory issue. Ann N Y Acad Sci. 2011;1229:45–52.PubMedCrossRefGoogle Scholar
  69. 69.
    Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol. 2010;72:219–46.PubMedCrossRefGoogle Scholar
  70. 70.
    Subbaramaiah K, Howe LR, et al. Obesity is associated with inflammation and elevated aromatase expression in the mouse mammary gland. Cancer Prev Res (Phila). 2011;4(3):329–46.CrossRefGoogle Scholar
  71. 71.
    O’Rourke RW. Inflammation in obesity-related diseases. Surgery. 2009;145(3):255–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Karin M. Nuclear factor-kappaB in cancer development and progression. Nature. 2006;441(7092):431–6.PubMedCrossRefGoogle Scholar
  73. 73.
    Renehan AG, Roberts DL, et al. Obesity and cancer: pathophysiological and biological mechanisms. Arch Physiol Biochem. 2008;114(1):71–83.PubMedCrossRefGoogle Scholar
  74. 74.
    Virchow R. Die Krankenhasften Geschwulste; Berlin, Germany. Aetologie der neoplastichen Geschwelste/Pathogenie der neoplastischen Geschwulste. 1863;58.Google Scholar
  75. 75.
    Aggarwal BB, Gehlot P. Inflammation and cancer: how friendly is the relationship for cancer patients? Curr Opin Pharmacol. 2009;9(4):351–69.PubMedCrossRefGoogle Scholar
  76. 76.
    Del Prete A, Allavena P, et al. Molecular pathways in cancer-related inflammation. Biochem Med (Zagreb). 2011;21(3):264–75.CrossRefGoogle Scholar
  77. 77.
    Ono M. Molecular links between tumor angiogenesis and inflammation: inflammatory stimuli of macrophages and cancer cells as targets for therapeutic strategy. Cancer Sci. 2008;99(8):1501–6.PubMedCrossRefGoogle Scholar
  78. 78.
    Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Foltz CJ, Fox JG, et al. Spontaneous inflammatory bowel disease in multiple mutant mouse lines: association with colonization by Helicobacter hepaticus. Helicobacter. 1998;3(2):69–78.PubMedCrossRefGoogle Scholar
  80. 80.
    Allavena P, Sica A, Garlanda C, Mantovani A. The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunol Rev. 2008;222:155–61.PubMedCrossRefGoogle Scholar
  81. 81.
    Koki A, Khan NK, et al. Cyclooxygenase-2 in human pathological disease. Adv Exp Med Biol. 2002;507:177–84.PubMedCrossRefGoogle Scholar
  82. 82.
    Kundu JK, Surh YJ. Inflammation: gearing the journey to cancer. Mutat Res. 2008;659(1–2):15–30.PubMedGoogle Scholar
  83. 83.
    Byrne AM, Bouchier-Hayes DJ, et al. Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J Cell Mol Med. 2005;9(4):777–94.PubMedCrossRefGoogle Scholar
  84. 84.
    Liu Y, Tamimi RM, et al. The association between vascular endothelial growth factor expression in invasive breast cancer and survival varies with intrinsic subtypes and use of adjuvant systemic therapy: results from the Nurses’ Health Study. Breast Cancer Res Treat. 2011;129(1):175–84.PubMedCrossRefGoogle Scholar
  85. 85.
    Cao Y. Angiogenesis modulates adipogenesis and obesity. J Clin Invest. 2007;117(9):2362–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Renehan AG. Body fatness and bevacizumab-based therapy in metastatic colorectal cancer. Gut. 2010;59(3):289–90.PubMedCrossRefGoogle Scholar
  87. 87.
    Simkens LH, Koopman M, et al. Influence of body mass index on outcome in advanced colorectal cancer patients receiving chemotherapy with or without targeted therapy. Eur J Cancer. 2011;47(17):2560–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Iwaki T, Urano T, et al. PAI-1, progress in understanding the clinical problem and its aetiology. Br J Haematol. 2012;157(3):291–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Muldowney 3rd JA, Chen Q, et al. Pentoxifylline lowers plasminogen activator inhibitor 1 levels in obese individuals: a pilot study. Angiology. 2012;63(6):429–34.PubMedCrossRefGoogle Scholar
  90. 90.
    Skurk T, Hauner H. Obesity and impaired fibrinolysis: role of adipose production of plasminogen activator inhibitor-1. Int J Obes Relat Metab Disord. 2004;28(11):1357–64.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Nikki A. Ford
    • 1
  • John DiGiovanni
    • 1
    • 2
  • Stephen D. Hursting
    • 1
    • 3
  1. 1.Department of Nutritional SciencesUniversity of TexasAustinUSA
  2. 2.College of PharmacyUniversity of TexasAustinUSA
  3. 3.Department of Molecular CarcinogenesisUniversity of Texas-MD Anderson Cancer CenterSmithvilleUSA

Personalised recommendations