Image-Guided Otorhinolaryngology

  • Patrick Dubach
  • Brett Bell
  • Stefan Weber
  • Marco Caversaccio


Beginning with a brief historical background, the chapter then offers the reader a practical overview of established procedures using image-guided surgery (IGS) in otorhinolaryngology. American and European recommendations for the use of IGS already exist and will be critically discussed in the light that a skilled hand and detailed knowledge of the anatomy by an experienced surgeon cannot yet be replaced by technology alone. Finally, a selected sample of new trends of experimental applications of intraoperative imaging and image-guided therapy will be given.


Augmented Reality Cavernous Sinus Functional Endoscopic Sinus Surgery Anterior Skull Base Digital Volume Tomography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Spiegel E, Wyeis H, Marks M, Lee A. Stereotactic apparatus for operations on the human brain. Science. 1947;106:349–55.PubMedCrossRefGoogle Scholar
  2. 2.
    Kormos DW, Piraino DW. Image-guided surgery attains clinical status. Diagnostic imaging. 1994;16(9): 77–9.Google Scholar
  3. 3.
    Schlöndorff G, Mösges R, Meyer-Ebrecht D, Krybus W, Adams L. CAS (computer assisted surgery). A new procedure in head and neck surgery. HNO. 1989;37(5):187–90.PubMedGoogle Scholar
  4. 4.
    Schlöndorff G. Computer-assisted surgery: historical remarks. Comput Aided Surg. 1998;3:150–2.PubMedCrossRefGoogle Scholar
  5. 5.
    Klimek L, Mösges R, Schlöndorff G, Mann W. Development of computer-aided surgery for otorhinolrangology. Comput Aided Surg. 1998;3:194–201.PubMedCrossRefGoogle Scholar
  6. 6.
    Kennedy DW, Zinreich SJ, Rosenbaum AE, Johns ME. Functional endoscopic sinus surgery. Theory and diagnostic evaluation. Arch Otolaryngol. 1985;111(9):576–82.PubMedCrossRefGoogle Scholar
  7. 7.
    Stammberger H, Kopp W, DeKornfeld TJ, Hawke M. Functional endoscopic sinus surgery: the Messerklinger technique. Philadelphia/St. Louis: Decker; 1991 (Sales and distribution, U.S. and Puerto Rico, Mosby-Year Book).Google Scholar
  8. 8.
    Sonkens JW, Harnsberger HR, Blanch GM, Babbel RW, Hunt S. The impact of screening sinus CT on the planning of functional endoscopic sinus surgery. Otolaryngol Head Neck Surg. 1991;105(6):802–13.PubMedGoogle Scholar
  9. 9.
    Raabe A, Krishnan R, Wolff R, Hermann E, Zimmermann M, Seifert V. Laser surface scanning for patient registration in intracranial image-guided surgery. Neurosurgery. 2002;50(4):797–801; discussion 802–3.PubMedCrossRefGoogle Scholar
  10. 10.
    Dubach P, Dähn J, Guggisberg A, Schroth G, Greusing B. Spontane durale arteriovenöse Fistel am Sinus cavernosus. HNO. 2010;58(1):63–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Caversaccio M, Eichenberger A, Hausler R. Virtual simulator as a training tool for endonasal surgery. Am J Rhinol. 2003;17(5):283–90.PubMedGoogle Scholar
  12. 12.
    Hsu L, Fried MP, Jolesz FA. MR-guided endoscopic sinus surgery. AJNR Am J Neuroradiol. 1998;19(7):1235–40.PubMedGoogle Scholar
  13. 13.
    Wormald PJ. Endoscopic sinus surgery: anatomy, three-dimensional reconstruction, and surgical technique. New York: Thieme; 2008.Google Scholar
  14. 14.
    Bell B, Dubach P, Heimgartner S, et al. Technological advances in rhinology and anterior skull base. In: Georgalas C, Fokkens W, editors. Rhinology and skull base surgery – From the lab to the operating room: an evidence based approach. Stuttgart/New York: Thieme Publishers; 2013. p. 586.Google Scholar
  15. 15.
    Brenner DJ, Hall EJ. Computed tomography – an increasing source of radiation exposure. N Engl J Med. 2007;357(22):2277–84.PubMedCrossRefGoogle Scholar
  16. 16.
    Koller CJ, Eatough JP, Bettridge A. Variations in radiation dose between the same model of multislice CT scanner at different hospitals. Br J Radiol. 2003;76(911):798–802.PubMedCrossRefGoogle Scholar
  17. 17.
    Dubach P, Eichenberger A, Caversaccio M. Radiation dose reduction in computer assisted navigation for functional endoscopic sinus surgery – cadaver head experiments and clinical implementation. Rhinology. 2010;48(3):339–43.PubMedGoogle Scholar
  18. 18.
    Nauer CB, Eichenberger A, Dubach P, Gralla J, Caversaccio M. CT Radiation dose for computer-assisted endoscopic sinus surgery: dose survey and determination of dose-reduction limits. AJNR Am J Neuroradiol. 2009;30(3):617–22.PubMedCrossRefGoogle Scholar
  19. 19.
    Jackman AH, Palmer JN, Chiu AG, Kennedy DW. Use of intraoperative CT scanning in endoscopic sinus surgery: a preliminary report. Am J Rhinol. 2008;22:170–4.PubMedCrossRefGoogle Scholar
  20. 20.
    Mann W, Klimek L. Indications for computer-assisted surgery in otorhinolaryngology. Comput Aided Surg. 1998;3:202–4.PubMedCrossRefGoogle Scholar
  21. 21.
    Metson R, Consenza M, Gliklich RE, Montgomery WW. The role of image-guidance systems for head and neck surgery. Arch Otolaryngol Head Neck Surg. 1999;125:1100–4.PubMedCrossRefGoogle Scholar
  22. 22.
    Caversaccio M, Giraldez JG, Thoranghatte R, Zheng G, Eggli P, Nolte L-P, Ballester MA. Augmented reality endoscopic system (ARES): preliminary results. Rhinology. 2008;46:156–8.PubMedGoogle Scholar
  23. 23.
    Caversaccio M, Stieger C, Weber S, Hausler R, Nolte LP. Computer-aided surgery of the paranasal sinuses and the anterior skull base. HNO. 2008;56:376–82.PubMedCrossRefGoogle Scholar
  24. 24.
    Vogele M, Freysinger W, Bale R, Gunkel AR, Thumfart WF. Use of the ISG viewing wand on the temporal bone. A model study. HNO. 1997;45(2):74–80.PubMedCrossRefGoogle Scholar
  25. 25.
    Caversaccio M, Zulliger D, Bächler R, Nolte L-P, Hausler R. Practical aspects for optimal registration (matching) on the lateral skull base with an optical frameless computer-aided pointer system. Am J Otol. 2000;21:863–70.PubMedGoogle Scholar
  26. 26.
    Lenarz T, Heermann R. Image-guided and computer-aided surgery in otology and neurotology: is there already a need for it? Am J Otol. 1999;20(2):143–4.PubMedGoogle Scholar
  27. 27.
    Caversaccio M, Stieger C, Weber S, Hausler R, Nolte L-P. Navigation and robotics of the lateral skull base. HNO. 2009;57:975–82.PubMedCrossRefGoogle Scholar
  28. 28.
    Caversaccio M, Romualdez J, Baechler R, Nolte L-P, Kompis M, Häusler R. Valuable use of computer-aided surgery in congenital bony aural atresia. J Laryngol Otol. 2003;117:241–8.PubMedGoogle Scholar
  29. 29.
    Strauss G, Koulechov K, Richter R, et al. Navigated control in functional endoscopic sinus surgery. Int J Med Robot. 2005;1(3):31–41.PubMedGoogle Scholar
  30. 30.
    Koulechov K, Strauss G, Dietz A, et al. FESS control: realization and evaluation of navigated control for functional endoscopic sinus surgery. Comput Aided Surg. 2006;11(3):147–59.PubMedGoogle Scholar
  31. 31.
    Strauss G, Hofer M, Fischer M, et al. First clinical application of a navigation-controlled shaver in paranasal sinus surgery. Surg Technol Int. 2008;17:19–25.PubMedGoogle Scholar
  32. 32.
    Noble JH, Majdani O, Labadie RF, Dawant B, Fitzpatrick JM. Automatic determination of optimal linear drilling trajectories for cochlear access accounting for drill-positioning error. Int J Med Robot. 2010;6(3):281–90.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Warren FM, Balachandran R, Fitzpatrick JM, Labadie RF. Percutaneous cochlear access using bone-mounted, customized drill guides: demonstration of concept in vitro. Otol Neurotol. 2007;28(3):325–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Wanna GB, Balachandran R, Majdani O, Mitchell J, Labadie RF. Percutaneous access to the petrous apex in vitro using customized micro-stereotactic frames based on image-guided surgical technology. Acta Otolaryngol. 2009;25:1–6.CrossRefGoogle Scholar
  35. 35.
    Majdani O, Rau TS, Baron S, et al. A robot-guided minimally invasive approach for cochlear implant surgery: preliminary results of a temporal bone study. Int J Comput Assist Radiol Surg. 2009;4(5):475–86.PubMedCrossRefGoogle Scholar
  36. 36.
    Klenzner T, Ngan CC, Knapp FB, et al. New strategies for high precision surgery of the temporal bone using a robotic approach for cochlear implantation. Eur Arch Otorhinolaryngol. 2009;266(7):955–60.PubMedCrossRefGoogle Scholar
  37. 37.
    Baron S, Eilers H, Munske B, et al. Percutaneous inner-ear access via an image-guided industrial robot system. Proc Inst Mech Eng. 2010;224(5):633–49.Google Scholar
  38. 38.
    Schipper J, Aschendorff A, Arapakis I, et al. Navigation as a quality management tool in cochlear implant surgery. J Laryngol Otol. 2004;118(10):764–70.PubMedCrossRefGoogle Scholar
  39. 39.
    Labadie RF, Mitchell J, Balachandran R, Fitzpatrick JM. Customized, rapid-production microstereotactic table for surgical targeting: description of concept and in vitro validation. Int J Comput Assist Radiol Surg. 2009;4(3):273–80.PubMedCrossRefGoogle Scholar
  40. 40.
    Stieger C, Caversaccio M, Arnold A, et al. Development of an auditory implant manipulator for minimally invasive surgical insertion of implantable hearing devices. J Laryngol Otol. 2011;125(3):262–70.Google Scholar
  41. 41.
    Bell B, Gerber N, Williamson T, et al. In vitro accuracy evaluation of image-guided robot system for direct cochlear access. Otology and neurotology. 2013;34(7):1284–90.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Patrick Dubach
    • 1
    • 2
  • Brett Bell
    • 3
  • Stefan Weber
    • 3
  • Marco Caversaccio
    • 1
  1. 1.Department of Otorhinolaryngology, Head and Neck SurgeryInselspital, University of BernBernSwitzerland
  2. 2.BMBF - Innovation Center for Computer Aided Surgery (ICCAS)University of LeipzigLeipzigGermany
  3. 3.ARTORG Center for Biomedical Engineering ResearchUniversity of BernBernSwitzerland

Personalised recommendations