MRI-Compatible C-Arm Imaging for Cardiac Intervention

  • Normand Robert
  • David R. Green
  • Philip T. Komljenovic
  • K. J. T. Anderson
  • Alexander J. Dick
  • John Bracken
  • John A. Rowlands
Chapter

Abstract

Minimally invasive interventions limit visual access to the anatomy under treatment requiring the use of imaging technologies for guidance. Organs and vessels located deep within the body can be visualized with imaging modalities having good tissue penetration such as X-ray or magnetic resonance imaging (MRI). X-ray guidance via fluoroscopy provides real-time images of large anatomical territories with a spatial resolution of ~0.2 mm usually with the aid of contrast agents. X-ray guidance also provides excellent percutaneous device visualization. MRI provides superior soft tissue differentiation and three-dimensional (3D) localization. However, intravascular MRI guidance is still in its clinical infancy, and concerns remain over exclusive reliance on this modality (Bock M and Wacker FK, J Magn Reson Imaging 27:326–38, 2008; Hushek SG et al., J Magn Reson Imaging 27:253–66; Ratnayaka K et al., J Cardiovasc Magn Reson 10:62, 2008). MRI and X-ray catheterization imaging exhibit complementary strengths that may potentially improve percutaneous therapies. Efforts to combine these two modalities into a fully hybrid X-ray-MR (XMR) system were first proposed by Fahrig et al. (J Magn Reson Imaging 13:294–300, 2001; Acta Neurochir 145:995–7, 2003). Current approaches include (1) the use of conventional X-ray catheterization and MRI systems in adjacent rooms with the addition of a dual-modality compatible patient table and transport system, (2) “combined” or “hybrid” systems, whereby both modalities can image overlapping volumes of interest with no or minimal patient relocation. Examples of interventions that may benefit from XMR are presented, as well as the imaging requirements associated with these procedures. We describe a novel hybrid cone-beam XMR system built by introducing a rotating anode X-ray catheterization system within 140 cm of a closed-bore 1.5 T MRI. The system is used to acquire images of an MRI-compatible catheter moving inside an aorta phantom.

Keywords

Cholesterol Catheter Filtration Attenuation Foam 

Notes

Acknowledgements

Financial support from the CFI (Canadian Foundation for Innovation) and the ORF (Ontario Research Fund), and CIHR (Canadian Institute for Health Research) is gratefully acknowledged.

References

  1. 1.
    Bock M, Wacker FK. MR-guided intravascular interventions: techniques and applications. J Magn Reson Imaging. 2008;27(2):326–38.PubMedCrossRefGoogle Scholar
  2. 2.
    Hushek SG, Martin AJ, Steckner M, Bosak E, Debbins J, Kucharzyk W. MR systems for MRI-guided interventions. J Magn Reson Imaging. 2008;27(2):253–66.PubMedCrossRefGoogle Scholar
  3. 3.
    Ratnayaka K, Faranesh AZ, Guttman MA, Kocaturk O, Saikus CE, Lederman RJ. Interventional cardiovascular magnetic resonance: still tantalizing. J Cardiovasc Magn Reson. 2008;10:62.PubMedCrossRefGoogle Scholar
  4. 4.
    Fahrig R, et al. A truly hybrid interventional MR/X-ray system: feasibility demonstration. J Magn Reson Imaging. 2001;13(2):294–300.PubMedCrossRefGoogle Scholar
  5. 5.
    Fahrig R, Heit G, Wen Z, Daniel BL, Butts K, Pelc NJ. First use of a truly-hybrid X-ray/MR imaging system for guidance of brain biopsy. Acta Neurochir. 2003;145(11):995–7; discussion 997.PubMedCrossRefGoogle Scholar
  6. 6.
    Owell SJOC, Ewby DAEN, Oon NIAB, Lder ANTE. Calcific aortic stenosis: same old story? Society. 2004;33(6):538–44.Google Scholar
  7. 7.
    Moura LM, Maganti K, Puthumana JJ, Rocha-Gonçalves F, Rajamannan NM. New understanding about calcific aortic stenosis and opportunities for pharmacologic intervention. Curr Opin Cardiol. 2007;22(6):572–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Chizner MA, Pearle DL, de Leon AC. The natural history of aortic stenosis in adults. Am Heart J. 1980;99(4):419–24.PubMedCrossRefGoogle Scholar
  9. 9.
    Mochizuki Y, Pandian NG. Role of echocardiography in the diagnosis and treatment of patients with aortic stenosis. Curr Opin Cardiol. 2003;18(5):327–33.PubMedCrossRefGoogle Scholar
  10. 10.
    Foster GP, Weissman NJ, Picard MH, Fitzpatrick PJ, Shubrooks SJ, Zarich SW. Determination of aortic valve area in valvular aortic stenosis by direct measurement using intracardiac echocardiography: a comparison with the Gorlin and continuity equations. J Am Coll Cardiol. 1996;27(2):392–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Sinha AK, Kini AS, Sharma SK. Percutaneous valve replacement: a paradigm shift. Curr Opin Cardiol. 2007;22(5):471–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Vahanian A, Acar C. Percutaneous valve procedures: what is the future? Curr Opin Cardiol. 2005;20(2):100–6.PubMedGoogle Scholar
  13. 13.
    Fish RD. Percutaneous heart valve replacement: enthusiasm tempered. Circulation. 2004;110(14):1876–8.PubMedCrossRefGoogle Scholar
  14. 14.
    di Marco F, Gerosa G. Percutaneous aortic valve replacement: which patients are suitable for it? A quest for a controlled use. J Thorac Cardiovasc Surg. 2007;133(2):294–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Grossi EA, et al. High-risk aortic valve replacement: are the outcomes as bad as predicted? Ann Thorac Surg. 2008;85(1):102–6; discussion 107.PubMedCrossRefGoogle Scholar
  16. 16.
    Walther T, et al. Minimally invasive transapical beating heart aortic valve implantation–proof of concept. Eur J Cardiothorac Surg. 2007;31(1):9–15.PubMedCrossRefGoogle Scholar
  17. 17.
    Grube E, et al. Percutaneous implantation of the CoreValve self-expanding valve prosthesis in high-risk patients with aortic valve disease: the Siegburg first-in-man study. Circulation. 2006;114(15):1616–24.PubMedCrossRefGoogle Scholar
  18. 18.
    Walther T, Chu MWA, Mohr FW. Transcatheter aortic valve implantation: time to expand? Curr Opin Cardiol. 2008;23(2):111–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Lamarche Y, et al. Implantation of the CoreValve percutaneous aortic valve. Ann Thorac Surg. 2007;83(1):284–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Flecher EM, Curry JW, Joudinaud TM, Kegel CL, Weber PA, Duran CMG. Coronary flow obstruction in percutaneous aortic valve replacement. An in vitro study. Eur J Cardiothorac Surg. 2007;32(2):291–4; discussion 295.PubMedCrossRefGoogle Scholar
  21. 21.
    Webb JG, et al. Percutaneous transarterial aortic valve replacement in selected high-risk patients with aortic stenosis. Circulation. 2007;116(7):755–63.PubMedCrossRefGoogle Scholar
  22. 22.
    Webb JG, et al. Percutaneous aortic valve implantation retrograde from the femoral artery. Circulation. 2006;113(6):842–50.PubMedCrossRefGoogle Scholar
  23. 23.
    Walther T, et al. Transapical approach for sutureless stent-fixed aortic valve implantation: experimental results. Eur J Cardiothorac Surg. 2006;29(5):703–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Wenaweser P, Buellesfeld L, Gerckens U, Grube E. Percutaneous aortic valve replacement for severe aortic regurgitation in degenerated bioprosthesis: the first valve in valve procedure using the Corevalve revalving system. Catheter Cardiovasc Interv. 2007;70(5):760–4.PubMedCrossRefGoogle Scholar
  25. 25.
    Berry C, et al. Novel therapeutic aspects of percutaneous aortic valve replacement with the 21F CoreValve revalving system. Catheter Cardiovasc Interv. 2007;70(4):610–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Grube E, et al. Percutaneous aortic valve replacement for severe aortic stenosis in high-risk patients using the second- and current third-generation self-expanding CoreValve prosthesis: device success and 30-day clinical outcome. J Am Coll Cardiol. 2007;50(1):69–76.PubMedCrossRefGoogle Scholar
  27. 27.
    Fann JI, et al. Evolving strategies for the treatment of valvular heart disease: preclinical and clinical pathways for percutaneous aortic valve replacement. Catheter Cardiovasc Interv. 2008;71(3):434–40.PubMedCrossRefGoogle Scholar
  28. 28.
    Buellesfeld L, Gerckens U, Grube E. Percutaneous implantation of the first repositionable aortic valve prosthesis in a patient with severe aortic stenosis. Catheter Cardiovasc Interv. 2008;71(5):579–84.PubMedCrossRefGoogle Scholar
  29. 29.
    Capodanno D, Di Salvo M-E, Tamburino C. Impact of right coronary artery disease on mortality in patients undergoing percutaneous coronary intervention of unprotected left main coronary artery disease. EuroIntervention. 2010;6(4):454–60.PubMedCrossRefGoogle Scholar
  30. 30.
    Claessen BEPM, et al. Prevalence and impact of a chronic total occlusion in a non-infarct-related artery on long-term mortality in diabetic patients with ST elevation myocardial infarction. Heart (British Cardiac Society). 2010;96(24):1968–72.CrossRefGoogle Scholar
  31. 31.
    Ivanhoe R, et al. Percutaneous transluminal coronary angioplasty of chronic total occlusions. Primary success, restenosis, and long-term clinical follow-up. Circulation. 1992;85(1):106–15.PubMedCrossRefGoogle Scholar
  32. 32.
    Noguchi T, Miyazaki MD S, Morii I, Daikoku S, Goto Y, Nonogi H. Percutaneous transluminal coronary angioplasty of chronic total occlusions. determinants of primary success and long-term clinical outcome. Catheter Cardiovasc Interv. 2000;49(3):258–64.PubMedCrossRefGoogle Scholar
  33. 33.
    Danchin N, et al. Effect of late percutaneous angioplastic recanalization of total coronary artery occlusion on left ventricular remodeling, ejection fraction, and regional wall motion. Am J Cardiol. 1996;78(7):729–35.PubMedCrossRefGoogle Scholar
  34. 34.
    Dzavik V, et al. Vladimir Dzavik. J Cardiol. 1994;73:856–61.CrossRefGoogle Scholar
  35. 35.
    Pizzetti G, Belotti G, Margonato A, Cappelletti A, Chierchia SL. Coronary recanalization by elective angioplasty prevents ventricular dilation after anterior myocardial infarction. J Am Coll Cardiol. 1996;28(4):837–45.PubMedCrossRefGoogle Scholar
  36. 36.
    Singh I. Failure of thrombus to resolve in urokinase-type plasminogen activator gene-knockout mice: rescue by normal bone marrow-derived cells. Circulation. 2003;107(6):869–75.PubMedCrossRefGoogle Scholar
  37. 37.
    Lamas GA, et al. Effect of infarct artery patency on prognosis after acute myocardial infarction. Circulation. 1995;92(5):1101–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Selnes OA, Goldsborough MA, Borowicz LM, McKhann GM. Neurobehavioural sequelae of cardiopulmonary bypass. Lancet. 1999;353(9164):1601–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Srinivas VS. Contemporary percutaneous coronary intervention versus balloon angioplasty for multivessel coronary artery disease: a comparison of the National Heart, Lung and Blood Institute Dynamic Registry and the Bypass Angioplasty Revascularization Investigation (BARI) study. Circulation. 2002;106(13):1627–33.PubMedCrossRefGoogle Scholar
  40. 40.
    Morice MC, Serruys PW, Sousa JE, Fajadet J, Ban Hayashi E, Perin M, Colombo A, Schuler G, Barragan P, Guagliumi G, Molnàr F, Falotico R, RAVEL Study Group. Randomized Study with the Sirolimus-Coated Bx Velocity Balloon-Expandable Stent in the Treatment of Patients with de Novo Native Coronary Artery Lesions. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N Engl J Med. 2002;346(23):1773–80.PubMedCrossRefGoogle Scholar
  41. 41.
    Hoye A, et al. Significant reduction in restenosis after the use of sirolimus-eluting stents in the treatment of chronic total occlusions. J Am Coll Cardiol. 2004;43(11):1954–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Stone GW, et al. Percutaneous recanalization of chronically occluded coronary arteries: procedural techniques, devices, and results. Catheter Cardiovasc Interv. 2005;66(2):217–36.PubMedCrossRefGoogle Scholar
  43. 43.
    Stone GW, et al. Percutaneous recanalization of chronically occluded coronary arteries: a consensus document: part I. Circulation. 2005;112(15):2364–72.PubMedCrossRefGoogle Scholar
  44. 44.
    Tan KH, Sulke N, Taub NA, Watts E, Karani S, Sowton E. Determinants of success of coronary angioplasty in patients with a chronic total occlusion: a multiple logistic regression model to improve selection of patients. Br Heart J. 1993;70(2):126–31.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Giokoglu K, et al. The recanalization of chronic coronary artery occlusions: what factors influence success? Dtsch Med Wochenschr. 1994;119(51–52):1766–70.PubMedCrossRefGoogle Scholar
  46. 46.
    Melchior JP, et al. Percutaneous transluminal coronary angioplasty for chronic total coronary arterial occlusion. Am J Cardiol. 1987;59(6):535–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Olivari Z, et al. Immediate results and one-year clinical outcome after percutaneous coronary interventions in chronic total occlusions: data from a multicenter, prospective, observational study (TOAST-GISE). J Am Coll Cardiol. 2003;41(10):1672–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Suzuki T, et al. Time-dependent morphologic characteristics in angiographic chronic total coronary occlusions. Am J Cardiol. 2001;88(2):167–9, A5–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Saikus CE. Interventional cardiovascular magnetic resonance imaging: a new opportunity for image-guided interventions. JACC Cardiovasc Imaging. 2009;2(11):1321.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Kim RJ, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343(20):1445–53.PubMedCrossRefGoogle Scholar
  51. 51.
    Riederer SJ, Tasciyan T, Farzaneh F, Lee JN, Wright RC, Herfkens RJ. MR fluoroscopy: technical feasibility. Magn Reson Med. 1988;8(1):1–15.PubMedCrossRefGoogle Scholar
  52. 52.
    Jolesz FA, Nabavi A, Kikinis R. Integration of interventional MRI with computer-assisted surgery. J Magn Reson Imaging. 2001;13(1):69–77.PubMedCrossRefGoogle Scholar
  53. 53.
    Dick AJ, et al. Invasive human magnetic resonance imaging: feasibility during revascularization in a combined XMR suite. 2005. doi: 10.1002/ccd.20302.
  54. 54.
    Brzozowski L, et al. Compatibility of interventional x-ray and magnetic resonance imaging: feasibility of a closed bore XMR (CBXMR) system. Med Phys. 2006;33(8):3033–45.PubMedCrossRefGoogle Scholar
  55. 55.
    Bracken JA, DeCrescenzo G, Komljenovic P, Lillaney PV, Fahrig R, Rowlands JA. Closed bore XMR (CBXMR) systems for aortic valve replacement: active magnetic shielding of x-ray tubes. Med Phys. 2009;36(5):1717.PubMedCrossRefGoogle Scholar
  56. 56.
    Bracken JA, Lillaney PV, Fahrig R, Rowlands JA. Closed bore XMR (CBXMR) systems for aortic valve replacement: investigation of rotating-anode x-ray tube heat loadability. Med Phys. 2008;35(9):4049.PubMedCrossRefGoogle Scholar
  57. 57.
    Bracken JA, Komljenovic P, Lillaney PV, Fahrig R, Rowlands JA. Closed-bore XMR (CBXMR) systems for aortic valve replacement: X-ray tube imaging performance. Med Phys. 2009;36(4):1086.PubMedCrossRefGoogle Scholar
  58. 58.
    Anderson KJT, Leung G, Dick AJ, Wright GA. Forward-looking intravascular orthogonal-solenoid coil for imaging and guidance in occlusive arterial disease. Magn Reson Med. 2008;60(2):489–95.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Normand Robert
    • 1
  • David R. Green
    • 1
  • Philip T. Komljenovic
    • 1
  • K. J. T. Anderson
    • 1
    • 2
  • Alexander J. Dick
    • 3
  • John Bracken
    • 4
  • John A. Rowlands
    • 5
  1. 1.Imaging ResearchSunnybrook Health Sciences CentreTorontoCanada
  2. 2.Department of Medical BiophysicsUniversity of TorontoTorontoCanada
  3. 3.Department of CardiologyUniversity of Ottawa Heart InstituteOttawaCanada
  4. 4.Department of Medical Biophysics, Sunnybrook HospitalUniversity of TorontoTorontoCanada
  5. 5.Thunder Bay Regional Research Institute, Thunder Bay Regional Health Sciences CenterThunder BayCanada

Personalised recommendations