High-Field Intraoperative MR-Guided Neurosurgery

  • Chip Truwit
  • Walter A. Hall


The story of intraoperative MR (iMR)-guided neurosurgery began in the 1990s with the implementation of the first such site at the Brigham and Women’s Hospital in Boston, MA [1, 2]. The Brigham installed the first truly open architecture magnetic resonance (MR) scanner, in which a patient’s head was directly accessible to a neurosurgeon at all times during the procedure. Although somewhat physically confining, for the first time, this breakthrough approach allowed neurosurgeons to undertake brain tumor removal under the dual observations of the surgeon’s eyes through an operating microscope and the radiologist’s eyes through the MR scanner’s images. Thus, in addition to the surface imaging afforded by direct visual inspection, surgeons could now see beyond the limits of their surgical field, and for the first time, they could visualize the completeness or, as was soon discovered, the incompleteness of their tumor resection.


Magnetic Resonance Scanner Brain Shift Magnetic Resonance Venography Balloon Test Occlusion Surgical Table 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Schenck JF, Jolesz FA, Roemer PB, et al. Superconducting open-configuration MR imaging system for image-guided therapy. Radiology. 1995;195(3):805–14.PubMedGoogle Scholar
  2. 2.
    Black PM, Moriarty T, Alexander III E, et al. Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications. Neurosurgery. 1997;41(4):831–42.PubMedCrossRefGoogle Scholar
  3. 3.
    Tronnier VM, Staubert A, Wirtz R, Knauth M, Bonsanto M, Kunze S. MRI-guided brain biopsies using a 0.2 Tesla open magnet. Minim Invasive Neurosurg. 1999;42(3):118–22.PubMedCrossRefGoogle Scholar
  4. 4.
    Seifert M, Zimmermann M, Trantakis C, et al. Open MRI-guided neurosurgery. Acta Neurochir (Wien). 1999;141(5):455–64.CrossRefGoogle Scholar
  5. 5.
    Metzger AK, Lewin JS. Optimizing brain tumor resection. Low-field interventional MR imaging. Neuroimaging Clin N Am. 2001;11(4):651–7.PubMedGoogle Scholar
  6. 6.
    Hinks RS, Bronskill MJ, Kucharzyk W, Bernstein M, Collick BD, Henkelman RM. MR systems for image-guided therapy. J Magn Reson Imaging. 1998;8(1):19–25.PubMedCrossRefGoogle Scholar
  7. 7.
    Lewin JS. Interventional MR, imaging: concepts, systems, and applications in neuroradiology. AJNR. 1999;20(5):735–48.PubMedGoogle Scholar
  8. 8.
    Steinmeier R, Fahlbusch R, Ganslandt O, et al. Intraoperative magnetic resonance imaging with the magnetom open scanner: concepts, neurosurgical indications, and procedures: a preliminary report. Neurosurgery. 1998;43(4):739–47; discussion 747–78.PubMedCrossRefGoogle Scholar
  9. 9.
    Hall WA, Martin AJ, Liu H. High-field strength interventional magnetic resonance imaging for pediatric neurosurgery. Pediatr Neurosurg. 1998;29(5):253–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Sutherland GR, Kaivara T, Louw D, Hoult DI, Tomanek B, Saunders J. A mobile high-field magnetic resonance system for neurosurgery. J Neurosurg. 1999;91(5):804–13.PubMedCrossRefGoogle Scholar
  11. 11.
    Hall WA, Liu H, Martin AJ, Pozza CH, Maxwell RE, Truwit CL. Safety, efficacy, and functionality of high-field strength interventional magnetic resonance imaging for neurosurgery. Neurosurgery. 2000;46(3):632–41; discussion 641–2.PubMedCrossRefGoogle Scholar
  12. 12.
    Hall WA, Liu H, Martin AJ, Maxwell RE, Truwit CL. Brain biopsy sampling by using prospective stereotaxis and a trajectory guide. J Neurosurg. 2001;94(1):67–71.PubMedCrossRefGoogle Scholar
  13. 13.
    Lewin JS, Nour SG, Meyers ML, et al. Intraoperative MRI with a rotating, tiltable surgical table: a time use study and clinical results in 122 patients. Am J Roentgenol. 2007;189(5):1096–103.CrossRefGoogle Scholar
  14. 14.
    Foroglou N, Black PM. Mid-field suite design. In: Hall WA, Nimsky C, Truwit CL, editors. Intraoperative MRI-guided neurosurgery. New York: Thieme; 2011. p. 12–7.Google Scholar
  15. 15.
    Michel E, Liu H, Remley KB, Martin AJ, Madison MT, Kucharczyk J, Truwit CL. Perfusion MR neuroimaging in patients undergoing balloon test occlusion of the internal carotid artery. AJNR Am J Neuroradiol. 2001;22(8):1590–6.PubMedGoogle Scholar
  16. 16.
    Lewin JS, Duerk JL, Jain VR, et al. Needle localization in MR-guided biopsy and aspiration: effects of field strength, sequence design, and magnetic field orientation. Am J Roentgenol. 1996;166(6):1337–45.CrossRefGoogle Scholar
  17. 17.
    Liu H, Martin AJ, Truwit CL. Interventional MRI at high-field (1.5T): needle artifacts. J Magn Reson Imaging. 1998;8:214–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Hata N, Piper S, Jolesz F, et al. Application of open source image guided therapy software in MR-guided therapies. Med Image Comput Comput Assist Interv. 2007;10(Pt 1):491–8.PubMedGoogle Scholar
  19. 19.
    Truwit CL, Liu H. Prospective stereotaxy: a novel method of trajectory alignment using real-time image-guidance. J Magn Reson Imaging. 2001;13(3):452–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Hall WA, Liu H, Truwit CL. Intraoperative MR-guided instillation of phosphorus-32 for cystic craniopharyngiomas: case report. Technol Cancer Res Treat. 2003;2(1):19–24.PubMedGoogle Scholar
  21. 21.
    Hall WA, Truwit CL. 1.5 T: spectroscopy-supported brain biopsy. Neurosurg Clin N Am. 2005;16(1):165–72; vii. Review.PubMedCrossRefGoogle Scholar
  22. 22.
    Liu H, Hall WA, Truwit CL. Remotely-controlled approach for stereotactic neurobiopsy. Comput Aided Surg. 2002;7(4):237–47.PubMedCrossRefGoogle Scholar
  23. 23.
    Kollias SS, Bernays R, Marugg RA, Romanowski B, Yonekawa Y, Valavanis A. Target definition and trajectory optimization for interactive MR-guided biopsies of brain tumors in an open configuration MRI system. J Magn Reson Imaging. 1998;8(1):143–59.PubMedCrossRefGoogle Scholar
  24. 24.
    Vitzthum HE, Winkler D, Strauss G, Lindner D, Krupp W, Schneider JP, Schober R, Meixensberger J. NEUROGATE: a new MR-compatible device for realizing minimally invasive treatment of intracerebral tumors. Comput Aided Surg. 2004;9(1–2):45–50.PubMedGoogle Scholar
  25. 25.
    Starr PA, Martin AJ, Ostrem JL, Talke P, Levesque N, Larson PS. Subthalamic nucleus deep brain stimulator placement using high-field interventional magnetic resonance imaging and a skull-mounted aiming device: technique and application accuracy. J Neurosurg. 2010;112(3):479–90.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Foltynie T, Zrinzo L, Martinez-Torres I, Tripoliti E, Petersen E, Holl E, Aviles-Olmos I, Jahanshahi M, Hariz M, Limousin P. MRI-guided STN DBS in Parkinson’s disease without microelectrode recording: efficacy and safety. J Neurol Neurosurg Psychiatry. 2011;82(4):358–63.PubMedCrossRefGoogle Scholar
  27. 27.
    Ashkan K, Blomstedt P, Zrinzo L, Tisch S, Yousry T, Limousin-Dowsey P, Hariz MI. Variability of the subthalamic nucleus: the case for direct MRI guided targeting. Br J Neurosurg. 2007;21(2):197–200.PubMedCrossRefGoogle Scholar
  28. 28.
    Martin AJ. MR guided DBS electrode implantation – a killer application? Montreal: Annual meeting of the ISMRM; 2011.Google Scholar
  29. 29.
    Hall WA, Kim P, Truwit CL. Functional magnetic resonance imaging-guided brain tumor resection. Top Magn Reson Imaging. 2009;19(4):205–12.PubMedCrossRefGoogle Scholar
  30. 30.
    Nimsky C. Intraoperative acquisition of fMRI and DTI. Neurosurg Clin N Am. 2011;22(2):269–77.PubMedCrossRefGoogle Scholar
  31. 31.
    Maesawa S, Fujii M, Nakahara N, Watanabe T, Wakabayashi T, Yoshida J. Intraoperative tractography and motor evoked potential (MEP) monitoring in surgery for gliomas around the corticospinal tract. World Neurosurg. 2010;74(1):153–61.PubMedCrossRefGoogle Scholar
  32. 32.
    Nabavi A, Goebel S, Doerner L, Warneke N, Ulmer S, Mehdorn M. Awake craniotomy and intraoperative magnetic resonance imaging: patient selection, preparation, and technique. Top Magn Reson Imaging. 2009;19(4):191–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Parney IF, Goerss SJ, McGee K, Huston 3rd J, Perkins WJ, Meyer FB. Awake craniotomy, electrophysiologic mapping, and tumor resection with high-field intraoperative MRI. World Neurosurg. 2010;73(5):547–51.PubMedCrossRefGoogle Scholar
  34. 34.
    Hatiboglu MA, Weinberg JS, Suki D, Rao G, Prabhu SS, Shah K, Jackson E, Sawaya R. Impact of intraoperative high-field magnetic resonance imaging guidance on glioma surgery: a prospective volumetric analysis. Neurosurgery. 2009;64(6):1073–81; discussion 1081.PubMedCrossRefGoogle Scholar
  35. 35.
    Bohinski RJ, Warnick RE, Gaskill-Shipley MF, Zuccarello M, van Loveren HR, Kormos DW, Tew Jr JM. Intraoperative magnetic resonance imaging to determine the extent of resection of pituitary macroadenomas during transsphenoidal microsurgery. Neurosurgery. 2001;49(5):1133–43; discussion 1143–4.PubMedGoogle Scholar
  36. 36.
    Hofmann BM, Nimsky C, Fahlbusch R. Benefit of 1.5-T intraoperative MR imaging in the surgical treatment of craniopharyngiomas. Acta Neurochir (Wien). 2011;153(7):1377–90; discussion 1390. doi: 10.1007/s00701-011-0973-x. Epub 2011 Apr 12.
  37. 37.
    Leuthardt EC, Lim CC, Shah MN, Evans JA, Rich KM, Dacey RG, Tempelhoff R, Chicoine MR. Use of movable high-field strength intraoperative magnetic resonance imaging with awake craniotomies for resection of gliomas: preliminary experience. Neurosurgery. 2011;69(1):194–205; discussion 205–6. doi: 10.1227/NEU.0b013e31821d0e4c.Google Scholar
  38. 38.
    Hall WA, Galicich W, Bergman T, Truwit CL. 3-Tesla intraoperative MR imaging for neurosurgery. J Neurooncol. 2006;77:297–303.PubMedCrossRefGoogle Scholar
  39. 39.
    Truwit CL, Hall WA. Intraoperative MR-guided neurosurgery @ 3T. Neurosurgery. 2006;58 Suppl 2:ONS-338–46.Google Scholar
  40. 40.
    Lang MJ, Sutherland GR. Technological convergence in the neurosurgical operating room. World Neurosurg. 2010;74(1):107–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Jankovski A, Francotte F, Vaz G, Fomekong E, Duprez T, Van Boven M, Docquier MA, Hermoye L, Cosnard G, Raftopoulos C. Intraoperative magnetic resonance imaging at 3-T using a dual independent operating room-magnetic resonance imaging suite: development, feasibility, safety, and preliminary experience. Neurosurgery. 2008;63(3):412–24; discussion 424–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Colen RR, Jolesz FA. Future potential of MRI-guided focused ultrasound brain surgery. Neuroimaging Clin N Am. 2010;20(3):355–66. Review.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Radiology, HCMCUniversity of Minnesota School of MedicineMinneapolisUSA
  2. 2.Department of NeurosurgerySUNY Upstate Medical UniversitySyracuseUSA

Personalised recommendations