Skip to main content

Image-Guided Robotics in Minimally Invasive Therapies

  • Chapter
  • First Online:
  • 3613 Accesses

Abstract

Imager-compatible robots in minimally invasive therapy enable precise placement of treatment tools on targets using intraoperative imaging for planning, navigation, and guiding. Percutaneous therapies such as biopsy and ablation therapies of breast, prostate, and abdominal organs are a typical area of clinical discipline benefitting from the imager-compatible robots. The imagers to be used for imager-compatible robots are ultrasound, X-ray, CT, and MRI. Of particular scientific interest, both from clinical and engineering perspective, is MRI-compatible robot. Developing MRI-compatible robots continues to be challenging, particularly when choosing actuators, materials, and sensors, given that these are conventionally made of materials and methods not suitable for the MRI environment. In the future, the utility of MRI-compatible robots will be further illuminated and appreciated when imaging is used as a part of sensory feedback for motion control. Other emerging areas of research in MRI-compatible robot development are micro- and nanorobotics, where miniature devices are manipulated and visualized in MRI.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Taylor RH, et al. An image-directed robotic system for precise orthopedic-surgery. IEEE Trans Robot Autom. 1994;10:261.

    Article  Google Scholar 

  2. Kienzle TC, et al. An integrated cad-robotics system for total knee replacement surgery. In: Proceedings: IEEE international conference on robotics and automation, vols. 1–3; 1993. p. 889–94.

    Google Scholar 

  3. Kazanzides P, et al. An integrated system for cementless hip-replacement – robotics and medical imaging technology enhance precision surgery. IEEE Eng Med Biol Mag. 1995;14:307.

    Article  Google Scholar 

  4. Kwoh YS, Hou J, Jonckheere EA, Hayati S. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng. 1988;35:153.

    Article  CAS  PubMed  Google Scholar 

  5. Kavoussi LR, et al. Telerobotic assisted laparoscopic surgery – initial laboratory and clinical-experience. Urology. 1994;44:15.

    Article  CAS  PubMed  Google Scholar 

  6. Sackier JM, Wang Y. Robotically assisted laparoscopic surgery – from concept to development. Surg Endosc Ultrasound Intervent Tech. 1994;8:63.

    CAS  Google Scholar 

  7. Masamune K, et al. Development of an MRI-compatible needle insertion manipulator for stereotactic neurosurgery. J Image Guid Surg. 1995;1:242.

    Article  CAS  PubMed  Google Scholar 

  8. Gassert R, Burdet E, Chinzei K. MRI-compatible robotics. IEEE Eng Med Biol Mag. 2008;27:12.

    Article  PubMed  Google Scholar 

  9. Chinzei K, Miller K. Towards MRI guided surgical manipulator. Med Sci Monit. 2001;7:153.

    CAS  PubMed  Google Scholar 

  10. Kaiser WA, Fischer H, Vagner J, Selig M. Robotic system for biopsy and therapy of breast lesions in a high-field whole-body magnetic resonance tomography unit. Invest Radiol. 2000;35:513.

    Article  CAS  PubMed  Google Scholar 

  11. Chinzei K, Kikinis R, Jolesz F. MR compatibility of mechatronic devices: design criteria. Med Image Comput Comput Assist Interv, vol.1679; 1999; 1020–30.

    Google Scholar 

  12. DiMaio SP, et al. Robot-assisted needle placement in open MRI: system architecture, integration and validation. Comput Aided Surg. 2007;12:15.

    CAS  PubMed  Google Scholar 

  13. Taylor RH, Stoianovici D. Medical robotics in computer-integrated surgery. IEEE Trans Robot Autom. 2003;19:765.

    Article  Google Scholar 

  14. Elhawary H, et al. The case for MR-compatible robotics: a review of the state of the art. Int J Med Robot Comput Assist Surg. 2008;4:105.

    Article  Google Scholar 

  15. Pfleiderer SOR, et al. A manipulator system for 14-gauge large core breast biopsies inside a high-field whole-body MR scanner. J Magn Reson Imaging. 2003;17:493.

    Article  PubMed  Google Scholar 

  16. Pfleiderer SR, et al. Magnetic resonance-guided large-core breast biopsy inside a 1.5-T magnetic resonance scanner using an automatic system – in vitro experiments and preliminary clinical experience in four patients. Invest Radiol. 2005;40:458.

    Article  PubMed  Google Scholar 

  17. Beyersdorff D, et al. MR imaging-guided prostate biopsy with a closed MR unit at 1.5 T: initial results. Radiology. 2005;234:576.

    Article  PubMed  Google Scholar 

  18. Schouten MG, et al. The accuracy and safety aspects of a novel robotic needle guide manipulator to perform transrectal prostate biopsies. Med Phys. 2010;37:4744.

    Article  PubMed  Google Scholar 

  19. Yakar D, et al. Feasibility of a pneumatically actuated MR-compatible robot for transrectal prostate biopsy guidance. Radiology. 2011;260:241.

    Article  PubMed  Google Scholar 

  20. van den Bosch MR, et al. MRI-guided robotic system for transperineal prostate interventions: proof of principle. Phys Med Biol. 2010;55:N133.

    Article  PubMed  Google Scholar 

  21. Hata N, Tokuda J, Hurwitz S, Morikawa S. MRI-compatible manipulator with remote-center-of-motion control. J Magn Reson Imaging. 2008;27:1130.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Melzer A, et al. INNOMOTION for percutaneous image-guided interventions: principles and evaluation of this MR- and CT-compatible robotic system. IEEE Eng Med Biol Mag. 2008;27:66.

    Article  PubMed  Google Scholar 

  23. Moche M, Zajonz D, Kahn T, Busse H. MRI-guided procedures in various regions of the body using a robotic assistance system in a closed-bore scanner: preliminary clinical experience and limitations. J Magn Reson Imaging. 2010;31:964.

    Article  PubMed  Google Scholar 

  24. Futterer JJ, Barentsz JO. MRI-guided and robotic-assisted prostate biopsy. Curr Opin Urol. 2012;22:316.

    Article  PubMed  Google Scholar 

  25. Stoianovici D, Patriciu A, Petrisor D, Mazilu D, Kavoussi L. A new type of motor: pneumatic step motor. IEEE-ASME Trans Mechatron. 2007;12:98.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Cunha JA, et al. Toward adaptive stereotactic robotic brachytherapy for prostate cancer: demonstration of an adaptive workflow incorporating inverse planning and an MR stealth robot. Minim Invasive Ther Allied Technol. 2010;19:189.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Stoianovici D, et al. MRI-compatible pneumatic robot (MRBot) for prostate brachytherapy: Preclinical assessment of accuracy and execution of dosimetric plans. Int J Radiat Oncol Biol Phys. 2008;72:S306.

    Article  Google Scholar 

  28. Muntener M, et al. Transperineal prostate intervention: robot for fully automated MR imaging – system description and proof of principle in a canine model. Radiology. 2008;247:543.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Stoianovici D, et al. “MRI Stealth” robot for prostate interventions. Minim Invasive Ther Allied Technol. 2007;16:241.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Patriciu A, et al. Automatic brachytherapy seed placement under MRI guidance. IEEE Trans Biomed Eng. 2007;54:1499.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Muntener M, et al. MRI robot for prostate brachytherapy. J Endourol. 2006;20:A339.

    Google Scholar 

  32. Fichtinger G, et al. Transrectal prostate biopsy inside closed MRI scanner with remote actuation, under real-time image guidance. Med Image Comput Comput Assist Interv. 2002;2488 Pt 1;91.

    Google Scholar 

  33. Balogh E, et al. Visualization, planning, and monitoring software for MRI-guided prostate intervention robot. Med Image Comput Comput Assist Interv. 2004;3217:73.

    Google Scholar 

  34. Krieger A, Susil RC, Fichtinger G, Atalar E, Whitcomb LL. Design of a novel MRI compatible manipulator for image guided prostate intervention. In: 2004 IEEE international conference on robotics and automation, vols. 1–5, Proceedings; 2004. p. 377.

    Google Scholar 

  35. Krieger A, et al. Design of a novel MRI compatible manipulator for image guided prostate interventions. IEEE Trans Biomed Eng. 2005;52:306.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Krieger A, Metzger G, Fichtinger G, Atalar E, Whitcomb LL. A hybrid method for 6-DOF tracking of MRI-compatible robotic interventional devices. In: 2006 IEEE international conference on robotics and automation (ICRA), vols. 1–10; 2006.p. 3844.

    Google Scholar 

  37. Fischer GS, Iordachita J, DiMaio SP, Fichtinger G. Design of a robot for transperineal prostate needle placement in MRI scanner. In: 2006 IEEE international conference on mechatronics. IEEE, Piscataway. 2006, p. 6.

    Google Scholar 

  38. Fischer GS, DiMaio SP, Iordachita II, Fichtinger G. Robotic assistant for transperineal prostate interventions in 3T closed MRI. Med Image Comput Comput Assis Interv. 2007;4791 Pt 1:425.

    Google Scholar 

  39. Fischer GS, et al. MRI-compatible pneumatic robot for transperineal prostate needle placement. IEEE-ASME Trans Mechatron. 2008;13:295.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Fischer GS, et al. MRI compatibility of robot actuation techniques – a comparative study. Med Image Comput Comput Assist Interv. 2008;5242 Pt Ii:509.

    Google Scholar 

  41. Mewes PW et al. Integrated system for robot-assisted in prostate biopsy in closed MRI scanner. In: 2008 IEEE international conference on robotics and automation, vols. 1–9; 2008. p. 2959.

    Google Scholar 

  42. Tokuda J, et al. Software strategy for robotic transperineal prostate therapy in closed-bore MRI. Med Image Comput Comput Assist Interv. 2008;5242 Pt Ii:701.

    Google Scholar 

  43. Song SE, et al. Development of a pneumatic robot for MRI-guided transperineal prostate biopsy and brachytherapy: new approaches. IEEE Int Conf Robot Autom. 2010;2010:2580.

    PubMed Central  PubMed  Google Scholar 

  44. Tokuda J, et al. Integrated navigation and control software system for MRI-guided robotic prostate interventions. Comput Med Imaging Graph. 2010;34:3.

    Article  PubMed  Google Scholar 

  45. Elhawary H, et al. A modular approach to MRI-compatible robotics. IEEE Eng Med Biol Mag. 2008;27:35.

    Article  PubMed  Google Scholar 

  46. Tse ZTH, et al. A 3-DOF MR-compatible device for magic angle related in vivo experiments. IEEE-ASME Trans Mechatron. 2008;13:316.

    Article  Google Scholar 

  47. Chinzei K, Kikinis R, Jolesz FA. MR compatibility of mechatronic devices: design criteria. Med Image Comput Comput Assist Interv. 1999;1679:1020.

    Google Scholar 

  48. Elhawary H, et al. The case for MR-compatible robotics: a review of the state of the. Int J Med Robot Comput Assist Surg. 2008;4:105.

    Article  Google Scholar 

  49. Schaefers G. Testing MR safety and compatibility. IEEE Eng Med Biol Mag. 2008;27:23.

    Article  PubMed  Google Scholar 

  50. IEC 62464-1 ed1.0, Magnetic resonance equipment for medical imaging - Part 1: Determination of essential image quality parameters. www.iec.org, 2007.

  51. Chinzei K, Hata N, Jolesz FA, Kikinis R. MR compatible surgical assist robot: system integration and preliminary feasibility study. Med Image Comput Comput Assist Interv. 2000;1935:921.

    Google Scholar 

  52. Song SE, Tokuda J, Tuncali K, Tempany C, Hata N, Holmes Iii DR, Wong KH, editors. Proceedings of SPIE Medical Imaging. vol. 8316. San Diego: SPIE; 2012. p. 831614–7.

    Google Scholar 

  53. Magnusson P, et al. Passive catheter tracking during interventional MRI using hyperpolarized 13C. Magn Reson Med. 2007;57:1140.

    Article  PubMed  Google Scholar 

  54. Bock M, et al. Active catheter tracking using parallel MRI and real-time image reconstruction. Magn Reson Med. 2006;55:1454.

    Article  PubMed  Google Scholar 

  55. Tamaz S, Gourdeau R, Chanu A, Mathieu JB, Martel S. Real-time MRI-based control of a ferromagnetic core for endovascular navigation. IEEE Trans Biomed Eng. 2008;55:1854.

    Article  PubMed  Google Scholar 

  56. Martel S, et al. A computer-assisted protocol for endovascular target interventions using a clinical MRI system for controlling untethered microdevices and future nanorobots. Comput Aided Surg. 2008;13:340.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuhiko Hata PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hata, N. (2014). Image-Guided Robotics in Minimally Invasive Therapies. In: Jolesz, F. (eds) Intraoperative Imaging and Image-Guided Therapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7657-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7657-3_31

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7656-6

  • Online ISBN: 978-1-4614-7657-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics