Image-Guided Radiation Therapy: Quality and Performance in Cancer Intervention

  • D. A. Jaffray


Image guidance has become a central element of radiation therapy. While the use of images begins at the planning phase, recent technological developments allow high-performance imaging at the treatment unit on a fraction-by-fraction basis, and thereby, allow errors in the targeting of the radiation to be detected and corrected. This development enables a reduction in the volume of normal tissues that must be exposed to therapeutic levels of radiation to assure target coverage. The tightening of the planning target volume (PTV) margins also permits dose escalation for clinical sites where local control is lacking. In addition to enabling novel treatments, IGRT technologies are also seen to increase the quality with which radiation therapy is executed. While the development of the imaging systems is a critical component of IGRT, there have also needed to be developments in the lexicon of radiation therapy prescription, image registration tools, and robotic technologies for patient repositioning to allow the IGRT paradigm to operate within the existing operational models of fractionated radiation therapy. Overall, the technological developments over the past 10 years have transformed radiation therapy into a leading model of image guidance in cancer intervention embarking on the exciting field of adaptive therapy, wherein, geometric and biological changes occurring during the course of therapy are accommodated through replanning.


Planning Target Volume Stereotactic Body Radiation Image Guidance Normal Tissue Complication Probability Treatment Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author would like to acknowledge individuals that have collaborated on some of the work reported in this chapter. These include Dr. Mike Milosevic, Mr. James Stewart, Dr. Kristy Brock, and Dr. Tim Craig. Drs. G. Fallone, J. Lagendijk, and J. Dempsey are thanked for providing some of the figures included in this paper. IMRIS, Inc. is acknowledged for providing the rendering of the MRgRT solution being developed for the Princess Margaret Hospital.


  1. 1.
    Leszczynski K, Boyko S. On the controversies surrounding the origins of radiation therapy. Radiother Oncol. 1997;42(3):213–7.PubMedCrossRefGoogle Scholar
  2. 2.
    del Regato JA. One hundred years of radiation oncology, Current radiation oncology, vol. 2. New York: Arnold and Oxford University Press, Inc.; 1996.Google Scholar
  3. 3.
    Keall PJ, Mageras GS, Balter JM, et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys. 2006;33(10):3874–900.PubMedCrossRefGoogle Scholar
  4. 4.
    Ghilezan MJ, Jaffray DA, Siewerdsen JH, et al. Prostate gland motion assessed with cine-magnetic resonance imaging (cine-MRI). Int J Radiat Oncol Biol Phys. 2005;62(2):406–17.PubMedCrossRefGoogle Scholar
  5. 5.
    Jaffray DA. Emergent technologies for 3-dimensional image-guided radiation delivery. Semin Radiat Oncol. 2005;15(3):208–16.PubMedCrossRefGoogle Scholar
  6. 6.
    Jaffray A, et al. Radiation oncology. In: Peters TM, Cleary K, editors. Image-guided interventions: technology and applications. New York: Springer; 2008.Google Scholar
  7. 7.
    ICRU50. ICRU report 50: prescribing, recording, and reporting photon beam therapy. Bethesda: International Commission on Radiation Units and Measurements; 1993.Google Scholar
  8. 8.
    ICRU62. ICRU report 62: prescribing, recording, and reporting photon beam therapy (supplement to ICRU report 50). Bethesda: International Commission on Radiation Units and Measurements; 1999.Google Scholar
  9. 9.
    van Herk M, Remeijer P, Rasch C, Lebesque JV. The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys. 2000;47(4):1121–35.PubMedCrossRefGoogle Scholar
  10. 10.
    Yan D, Lockman D, Brabbins D, Tyburski L, Martinez A. An off-line strategy for constructing a patient-specific planning target volume in adaptive treatment process for prostate cancer. Med Phys. 1997;38:197.Google Scholar
  11. 11.
    Yan D, Vicini F, Wong J, Martinez A. Adaptive radiation therapy. Phys Med Biol. 1997;42(1):123–32.PubMedCrossRefGoogle Scholar
  12. 12.
    Lebesque JV, Bel A, Bijhold J, Hart AA. Detection of systematic patient setup errors by portal film analysis. Radiother Oncol. 1992;23(3):198.PubMedCrossRefGoogle Scholar
  13. 13.
    Jaffray DA, Battista JJ, Fenster A, Munro P. X-ray sources of medical linear accelerators: focal and extra-focal radiation. Med Phys. 1993;20:1417.PubMedCrossRefGoogle Scholar
  14. 14.
    Jaffray DA, Munro P, Battista JJ, Fenster A. Activity distribution of a cobalt-60 teletherapy source. Med Phys. 1991;18:288.PubMedCrossRefGoogle Scholar
  15. 15.
    Herman MG, Balter JM, Jaffray DA, et al. Clinical use of electronic portal imaging: report of AAPM Radiation Therapy Committee Task Group 58. Med Phys. 2001;28:712.PubMedCrossRefGoogle Scholar
  16. 16.
    Antonuk LE, Yorkston J, Boudry J, Longo MJ, Jimenez J, Street RA. Development of hydrogenated amorphous silicon sensors for high energy photon radiotherapy imaging. IEEE Trans Nucl Sci. 1990;37:165.CrossRefGoogle Scholar
  17. 17.
    Alasti H, Petric MP, Catton CN, Warde PR. Portal imaging for evaluation of daily on-line setup errors and off-line organ motion during conformal irradiation of carcinoma of the prostate. Int J Radiat Oncol Biol Phys. 2001;49(3):869–84.PubMedCrossRefGoogle Scholar
  18. 18.
    Chung PW, Haycocks T, Brown T, et al. On-line aSi portal imaging of implanted fiducial markers for the reduction of interfraction error during conformal radiotherapy of prostate carcinoma. Int J Radiat Oncol Biol Phys. 2004;60(1):329–34.PubMedCrossRefGoogle Scholar
  19. 19.
    Shirato H, Shimizu S, Kunieda T, et al. Physical aspects of a real-time tumor-tracking system for gated radiotherapy. Int J Radiat Oncol Biol Phys. 2000;48(4):1187–95.PubMedCrossRefGoogle Scholar
  20. 20.
    Ruchala KJ, Olivera GH, Schloesser EA, Mackie TR. Megavoltage CT on a tomotherapy system. Phys Med Biol. 1999;44(10): 2597–621.PubMedCrossRefGoogle Scholar
  21. 21.
    Pouliot J, Bani-Hashemi A, Chen J, et al. Low-dose megavoltage cone-beam CT for radiation therapy. Int J Radiat Oncol Biol Phys. 2005;61(2):552–60.PubMedCrossRefGoogle Scholar
  22. 22.
    Jaffray DA, Siewerdsen JH, Wong JW, Martinez AA. Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys. 2002;53(5):1337–49.PubMedCrossRefGoogle Scholar
  23. 23.
    Li W, Moseley DJ, Manfredi T, Jaffray DA. Accuracy of automatic couch corrections with on-line volumetric imaging. J Appl Clin Med Phys. 2009;10(4):3056.PubMedCrossRefGoogle Scholar
  24. 24.
    Wilbert J, Guckenberger M, Polat B, et al. Semi-robotic 6 degree of freedom positioning for intracranial high precision radiotherapy; first phantom and clinical results. Radiat Oncol. 2010;5:42.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Siker ML, Tome WA, Mehta MP. Tumor volume changes on serial imaging with megavoltage CT for non-small-cell lung cancer during intensity-modulated radiotherapy: how reliable, consistent, and meaningful is the effect? Int J Radiat Oncol Biol Phys. 2006;66(1): 135–41.PubMedCrossRefGoogle Scholar
  26. 26.
    Kupelian PA, Ramsey C, Meeks SL, et al. Serial megavoltage CT imaging during external beam radiotherapy for non-small-cell lung cancer: observations on tumor regression during treatment. Int J Radiat Oncol Biol Phys. 2005;63(4):1024–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Sonke JJ, Lebesque JV, Van Herk M. Variability of four-dimensional computed tomography patient models. Int J Radiat Oncol Biol Phys. 2008;70(2):590–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Lim K, Kelly V, Stewart J, et al. Pelvic radiotherapy for cancer of the cervix: is what you plan actually what you deliver? Int J Radiat Oncol Biol Phys. 2009;74(1):304–12.PubMedCrossRefGoogle Scholar
  29. 29.
    Lim K, Chan P, Dinniwell R, et al. Cervical cancer regression measured using weekly magnetic resonance imaging during fractionated radiotherapy: radiobiologic modeling and correlation with tumor hypoxia. Int J Radiat Oncol Biol Phys. 2008;70(1):126–33.PubMedCrossRefGoogle Scholar
  30. 30.
    Stewart JMP, Lim K, Brock KK, et al. Automated weekly online replanning for IMRT of cervix cancer. Int J Radiat Oncol Biol Phys. 2008;72 Suppl 1:S18.CrossRefGoogle Scholar
  31. 31.
    Mayr NA, Wang JZ, Lo SS, et al. Translating response during therapy into ultimate treatment outcome: a personalized 4-dimensional MRI tumor volumetric regression approach in cervical cancer. Int J Radiat Oncol Biol Phys. 2010;76:719–27.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Barker Jr JL, Garden AS, Ang KK, et al. Quantification of volumetric and geometric changes occurring during fractionated radiotherapy for head-and-neck cancer using an integrated CT/linear accelerator system. Int J Radiat Oncol Biol Phys. 2004;59(4): 960–70.PubMedCrossRefGoogle Scholar
  33. 33.
    Yan D. Developing quality assurance processes for image-guided adaptive radiation therapy. Int J Radiat Oncol Biol Phys. 2008;71(1 Suppl):S28–32.PubMedCrossRefGoogle Scholar
  34. 34.
    Ghilezan M, Yan D, Martinez A. Adaptive radiation therapy for prostate cancer. Semin Radiat Oncol. 2010;20(2):130–7.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Tanderup K, Georg D, Potter R, Kirisits C, Grau C, Lindegaard JC. Adaptive management of cervical cancer radiotherapy. Semin Radiat Oncol. 2010;20(2):121–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Pos F, Remeijer P. Adaptive management of bladder cancer radiotherapy. Semin Radiat Oncol. 2010;20(2):116–20.PubMedCrossRefGoogle Scholar
  37. 37.
    Brock KK, Dawson LA. Adaptive management of liver cancer radiotherapy. Semin Radiat Oncol. 2010;20(2):107–15.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Sonke JJ, Belderbos J. Adaptive radiotherapy for lung cancer. Semin Radiat Oncol. 2010;20(2):94–106.PubMedCrossRefGoogle Scholar
  39. 39.
    Castadot P, Lee JA, Geets X, Gregoire V. Adaptive radiotherapy of head and neck cancer. Semin Radiat Oncol. 2010;20(2):84–93.PubMedCrossRefGoogle Scholar
  40. 40.
    Yan D. Adaptive radiotherapy: merging principle into clinical practice. Semin Radiat Oncol. 2010;20(2):79–83.PubMedCrossRefGoogle Scholar
  41. 41.
    Dawson LA, Jaffray DA. Advances in image-guided radiation therapy. J Clin Oncol. 2007;25(8):938–46.PubMedCrossRefGoogle Scholar
  42. 42.
    Yan D, Jaffray DA, Wong JW. A model to accumulate fractionated dose in a deforming organ. Int J Radiat Oncol Biol Phys. 1999;44(3):665–75.PubMedCrossRefGoogle Scholar
  43. 43.
    Brock KK. A multi-institution deformable registration accuracy study. Int J Radiat Oncol Biol Phys (Abstract). 2007;69(3):S44.CrossRefGoogle Scholar
  44. 44.
    Brock KK. Results of a multi-institution deformable registration accuracy study (MIDRAS). Int J Radiat Oncol Biol Phys. 2010;76(2):583–96.PubMedCrossRefGoogle Scholar
  45. 45.
    Pekar V, McNutt TR, Kaus MR. Automated model-based organ delineation for radiotherapy planning in prostatic region. Int J Radiat Oncol Biol Phys. 2004;60(3):973–80.PubMedGoogle Scholar
  46. 46.
    Letourneau D, Kaus M, Wong R, et al. Semiautomatic vertebrae visualization, detection, and identification for online palliative radiotherapy of bone metastases of the spine. Med Phys. 2008;35(1):367–76.PubMedCrossRefGoogle Scholar
  47. 47.
    Fallone BG, Murray B, Rathee S, et al. First MR images obtained during megavoltage photon irradiation from a prototype integrated linac-MR system. Med Phys. 2009;36(6):2084–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Raaymakers BW, Lagendijk JJ, Overweg J, et al. Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept. Phys Med Biol. 2009;54(12):N229–37.PubMedCrossRefGoogle Scholar
  49. 49.
    Fox C, Romeijn HE, Lynch B, Men C, Aleman DM, Dempsey JF. Comparative analysis of 60Co intensity-modulated radiation therapy. Phys Med Biol. 2008;53(12):3175–88.PubMedCrossRefGoogle Scholar
  50. 50.
    Karlsson M, Karlsson MG, Nyholm T, Amies C, Zackrisson B. Dedicated magnetic resonance imaging in the radiotherapy clinic. Int J Radiat Oncol Biol Phys. 2009;74(2):644–51.PubMedCrossRefGoogle Scholar
  51. 51.
    Jaffray D, Carlone M, Menard C, Breen S. Image-guided radiation therapy: emergence of MR-Guided Radiation Treatment (MRgRT) systems. Paper presented at: Society of PhotoOptical Instrumentation and Engineering, San Diego. 2010.Google Scholar
  52. 52.
    Raaymakers BW, Raaijmakers AJ, Kotte AN, Jette D, Lagendijk JJ. Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose deposition in a transverse magnetic field. Phys Med Biol. 2004;49(17):4109–18.PubMedCrossRefGoogle Scholar
  53. 53.
    Kirkby C, Stanescu T, Fallone BG. Magnetic field effects on the energy deposition spectra of MV photon radiation. Phys Med Biol. 2009;54(2):243–57.PubMedCrossRefGoogle Scholar
  54. 54.
    Raaijmakers AJ, Raaymakers BW, Lagendijk JJ. Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose increase at tissue-air interfaces in a lateral magnetic field due to returning electrons. Phys Med Biol. 2005;50(7):1363–76.PubMedCrossRefGoogle Scholar
  55. 55.
    ASRT. Radiation therapy, management and dosimetry workplace survey: American Society of Radiologic Technologists. 2010.Google Scholar
  56. 56.
    de Crevoisier R, Tucker SL, Dong L, et al. Increased risk of biochemical and local failure in patients with distended rectum on the planning CT for prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys. 2005;62(4):965–73.PubMedCrossRefGoogle Scholar
  57. 57.
    Heemsbergen WD, Hoogeman MS, Witte MG, Peeters ST, Incrocci L, Lebesque JV. Increased risk of biochemical and clinical failure for prostate patients with a large rectum at radiotherapy planning: results from the Dutch trial of 68 GY versus 78 Gy. Int J Radiat Oncol Biol Phys. 2007;67(5):1418–24.PubMedCrossRefGoogle Scholar
  58. 58.
    Fuss M, Shi C, Papanikolaou N. Tomotherapeutic stereotactic body radiation therapy: techniques and comparison between modalities. Acta Oncol. 2006;45(7):953–60.PubMedCrossRefGoogle Scholar
  59. 59.
    Chang BK, Timmerman RD. Stereotactic body radiation therapy: a comprehensive review. Am J Clin Oncol. 2007;30(6):637–44.PubMedCrossRefGoogle Scholar
  60. 60.
    Guckenberger M, Heilman K, Wulf J, Mueller G, Beckmann G, Flentje M. Pulmonary injury and tumor response after stereotactic body radiotherapy (SBRT): results of a serial follow-up CT study. Radiother Oncol. 2007;85(3):435–42.PubMedCrossRefGoogle Scholar
  61. 61.
    Guckenberger M, Wulf J, Mueller G, et al. Dose–response relationship for image-guided stereotactic body radiotherapy of pulmonary tumors: relevance of 4D dose calculation. Int J Radiat Oncol Biol Phys. 2009;74(1):47–54.PubMedCrossRefGoogle Scholar
  62. 62.
    Uematsu M, Shioda A, Tahara K, et al. Focal, high dose, and fractionated modified stereotactic radiation therapy for lung carcinoma patients: a preliminary experience. Cancer. 1998;82(6):1062–70.PubMedCrossRefGoogle Scholar
  63. 63.
    Onishi H, Kuriyama K, Komiyama T, et al. Clinical outcomes of stereotactic radiotherapy for stage I non-small cell lung cancer using a novel irradiation technique: patient self-controlled breath-hold and beam switching using a combination of linear accelerator and CT scanner. Lung Cancer. 2004;45(1):45–55.PubMedCrossRefGoogle Scholar
  64. 64.
    Timmerman RD, Forster KM, Chinsoo Cho L. Extracranial stereotactic radiation delivery. Semin Radiat Oncol. 2005;15(3):202–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Shirato H, Shimizu S, Shimizu T, Nishioka T, Miyasaka K. Real-time tumour-tracking radiotherapy. Lancet. 1999;353(9161):1331.PubMedCrossRefGoogle Scholar
  66. 66.
    Timmerman R, Galvin J, Michalski J, et al. Accreditation and quality assurance for Radiation Therapy Oncology Group: multicenter clinical trials using stereotactic body radiation therapy in lung cancer. Acta Oncol. 2006;45(7):779–86.PubMedCrossRefGoogle Scholar
  67. 67.
    Fakiris AJ, McGarry RC, Yiannoutsos CT, et al. Stereotactic body radiation therapy for early-stage non-small-cell lung carcinoma: four-year results of a prospective phase II study. Int J Radiat Oncol Biol Phys. 2009;75(3):677–82.PubMedCrossRefGoogle Scholar
  68. 68.
    Greco C. Predictors of local control after single-dose stereotactic image-guided intensity-modulated radiotherapy for extracranial metastases. Int J Radiat Oncol Biol Phys. 2011;79(4):1151–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Swaminath A, Dawson LA. Emerging role of radiotherapy in the management of liver metastases. Cancer J. 2010;16(2):150–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Medical Biophysics, Princess Margaret HospitalUniversity of TorontoTorontoCanada

Personalised recommendations