Skip to main content

Overcoming Resistance to Therapeutic Antibodies by Targeting Fc Receptors

  • Chapter
  • First Online:

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 2))

Abstract

Monoclonal antibodies (mAb) are now at the forefront of cancer therapy. Their mechanisms of action remain the focus of intense investigation as it offers the prospect of increased potency through antibody engineering or adjuvant therapy. Although roles for complement and the induction of direct cell death remain controversial, the importance of Fc gamma receptors (FcγR) to the efficacy of therapeutic antibodies is irrefutable. However, the biology of these receptors is complex and it is now clear that in certain instances inappropriate expression or upregulation of FcγR can be detrimental. This complexity is compounded by recent exciting data showing that FcγR on both the effector and the target cell help govern therapeutic potency. In this review the ability of FcγR to elicit and modulate antibody therapy will be discussed alongside potential strategies to overcome the associated resistance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ADCC:

Antibody-dependent cellular cytotoxicity

ADCP:

Antibody-dependent cellular phagocytosis

CDC:

Complement-dependent cytotoxicity

CLL:

Chronic lymphocytic leukaemia

CNV:

Copy number variation

DLBCL:

Diffuse large B cell lymphoma

FcγR:

Fc gamma receptor

IC:

Immune complexes

ITAM:

Immunoreceptor tyrosine-based activation motif

ITIM:

Immunoreceptor tyrosine-based inhibitory motif

mAb:

Monoclonal antibodies

MCL:

Mantle cell lymphoma

NHL:

Non Hodgkins Lymphoma

TAM:

Tumour-associated macrophages

TGF-β:

Transforming growth factor-β

TLR:

Toll-like receptor

References

  1. Glennie MJ, Johnson PW. Clinical trials of antibody therapy. Immunol Today. 2000;21:403–10.

    PubMed  CAS  Google Scholar 

  2. Glennie MJ, van de Winkel JG. Renaissance of cancer therapeutic antibodies. Drug Discov Today. 2003;8:503–10.

    PubMed  CAS  Google Scholar 

  3. Glennie MJ, French RR, Cragg MS, Taylor RP. Mechanisms of killing by anti-CD20 monoclonal antibodies. Mol Immunol. 2007;44:3823–37.

    PubMed  CAS  Google Scholar 

  4. Reff ME, Carner K, Chambers KS, Chinn PC, Leonard JE, Raab R, Newman RA, Hanna N, Anderson DR. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood. 1994;83:435–45.

    PubMed  CAS  Google Scholar 

  5. Pescovitz MD. Rituximab, an anti-cd20 monoclonal antibody: history and mechanism of action. Am J Transplant. 2006;6:859–66.

    PubMed  CAS  Google Scholar 

  6. Fisher RI, Gaynor ER, Dahlberg S, Oken MM, Grogan TM, Mize EM, Glick JH, Coltman CA Jr, Miller TP. Comparison of a standard regimen (CHOP) with three intensive chemotherapy regimens for advanced non-Hodgkin’s lymphoma. N Engl J Med. 1993;328:1002–6.

    PubMed  CAS  Google Scholar 

  7. Sehn LH, Donaldson J, Chhanabhai M, Fitzgerald C, Gill K, Klasa R, MacPherson N, O’Reilly S, Spinelli JJ, Sutherland J, Wilson KS, Gascoyne RD, Connors JM. Introduction of combined CHOP plus rituximab therapy dramatically improved outcome of diffuse large B-cell lymphoma in British Columbia. J Clin Oncol. 2005;23:5027–33.

    PubMed  CAS  Google Scholar 

  8. Salles GA. Clinical features, prognosis and treatment of follicular lymphoma. Hematology Am Soc Hematol Educ Program. 2007;2007:216–25.

    Google Scholar 

  9. Lim SH, Vaughan AT, Ashton-Key M, Williams EL, Dixon SV, Chan CH, Beers SA, French RR, Cox KL, Davies AJ, Potter KN, Mockridge CI, Oscier DG, Johnson PW, Cragg MS, Glennie MJ. Fc gamma receptor IIb on target B cells promotes rituximab internalization and reduces clinical efficacy. Blood. 2011;118:2530–40.

    PubMed  Google Scholar 

  10. Lim SH, Beers SA, French RR, Johnson PW, Glennie MJ, Cragg MS. Anti-CD20 monoclonal antibodies: historical and future perspectives. Haematologica. 2010;95:135–43.

    PubMed  CAS  Google Scholar 

  11. Li Y, Williams ME, Cousar JB, Pawluczkowycz AW, Lindorfer MA, Taylor RP. Rituximab-CD20 complexes are shaved from Z138 mantle cell lymphoma cells in intravenous and subcutaneous SCID mouse models. J Immunol. 2007;179:4263–71.

    PubMed  CAS  Google Scholar 

  12. Kennedy AD, Beum PV, Solga MD, DiLillo DJ, Lindorfer MA, Hess CE, Densmore JJ, Williams ME, Taylor RP. Rituximab infusion promotes rapid complement depletion and acute CD20 loss in chronic lymphocytic leukemia. J Immunol. 2004;172:3280–8.

    PubMed  CAS  Google Scholar 

  13. Beum PV, Kennedy AD, Williams ME, Lindorfer MA, Taylor RP. The shaving reaction: rituximab/CD20 complexes are removed from mantle cell lymphoma and chronic lymphocytic leukemia cells by THP-1 monocytes. J Immunol. 2006;176:2600–9.

    PubMed  CAS  Google Scholar 

  14. Williams ME, Densmore JJ, Pawluczkowycz AW, Beum PV, Kennedy AD, Lindorfer MA, Hamil SH, Eggleton JC, Taylor RP. Thrice-weekly low-dose rituximab decreases CD20 loss via shaving and promotes enhanced targeting in chronic lymphocytic leukemia. J Immunol. 2006;177:7435–43.

    PubMed  CAS  Google Scholar 

  15. Wang SY, Racila E, Taylor RP, Weiner GJ. NK-cell activation and antibody-dependent cellular cytotoxicity induced by rituximab-coated target cells is inhibited by the C3b component of complement. Blood. 2008;111:1456–63.

    PubMed  CAS  Google Scholar 

  16. Beers SA, French RR, Chan CH, Lim SH, Jarrett TC, Mora Vidal R, Wijayaweera SS, Dixon SV, Kim H, Cox KL, Kerr JP, Johnston DA, Johnson PW, Verbeek JS, Glennie MJ, Cragg MS. Antigenic modulation limits the efficacy of anti-CD20 antibodies: implications for antibody selection. Blood. 2010;115:5191–201.

    PubMed  CAS  Google Scholar 

  17. Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med. 2000;6:443–6.

    PubMed  CAS  Google Scholar 

  18. Kaneko Y, Nimmerjahn F, Ravetch JV. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science. 2006;313:670–3.

    PubMed  CAS  Google Scholar 

  19. Hamaguchi Y, Xiu Y, Komura K, Nimmerjahn F, Tedder TF. Antibody isotype-specific engagement of Fcgamma receptors regulates B lymphocyte depletion during CD20 immunotherapy. J Exp Med. 2006;203:743–53.

    PubMed  CAS  Google Scholar 

  20. Nimmerjahn F, Ravetch JV. Antibodies, Fc receptors and cancer. Curr Opin Immunol. 2007;19:239–45.

    PubMed  CAS  Google Scholar 

  21. Ravetch JV, Bolland S. IgG Fc receptors. Annu Rev Immunol. 2001;19:275–90.

    PubMed  CAS  Google Scholar 

  22. Nimmerjahn F, Ravetch JV. Fcgamma receptors as regulators of immune responses. Nat Rev. 2008;8:34–47.

    CAS  Google Scholar 

  23. Bruhns P, Iannascoli B, England P, Mancardi DA, Fernandez N, Jorieux S, Daeron M. Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses. Blood. 2009;113:3716–25.

    PubMed  CAS  Google Scholar 

  24. Ravetch JV, Luster AD, Weinshank R, Kochan J, Pavlovec A, Portnoy DA, Hulmes J, Pan YC, Unkeless JC. Structural heterogeneity and functional domains of murine immunoglobulin G Fc receptors. Science. 1986;234:718–25.

    PubMed  CAS  Google Scholar 

  25. Hogarth PM, Witort E, Hulett MD, Bonnerot C, Even J, Fridman WH, McKenzie IF. Structure of the mouse beta Fc gamma receptor II gene. J Immunol. 1991;146:369–76.

    PubMed  CAS  Google Scholar 

  26. Joshi T, Ganesan LP, Cao X, Tridandapani S. Molecular analysis of expression and function of hFcgammaRIIbl and b2 isoforms in myeloid cells. Mol Immunol. 2006;43:839–50.

    PubMed  CAS  Google Scholar 

  27. Cassel DL, Keller MA, Surrey S, Schwartz E, Schreiber AD, Rappaport EF, McKenzie SE. Differential expression of Fc gamma RIIA, Fc gamma RIIB and Fc gamma RIIC in hematopoietic cells: analysis of transcripts. Mol Immunol. 1993;30:451–60.

    PubMed  CAS  Google Scholar 

  28. Van Den Herik-Oudijk IE, Westerdaal NA, Henriquez NV, Capel PJ, Van De Winkel JG. Functional analysis of human Fc gamma RII (CD32) isoforms expressed in B lymphocytes. J Immunol. 1994;152:574–85.

    Google Scholar 

  29. Budde P, Bewarder N, Weinrich V, Schulzeck O, Frey J. Tyrosine-containing sequence motifs of the human immunoglobulin G receptors FcRIIb1 and FcRIIb2 essential for endocytosis and regulation of calcium flux in B cells. J Biol Chem. 1994;269:30636–44.

    PubMed  CAS  Google Scholar 

  30. Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, Watier H. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood. 2002;99:754–8.

    PubMed  CAS  Google Scholar 

  31. Weng WK, Levy R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol. 2003;21:3940–7.

    PubMed  CAS  Google Scholar 

  32. Nimmerjahn F, Ravetch JV. Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science New York 2005, 310:1510–1512.

    Google Scholar 

  33. Nimmerjahn F, Ravetch JV. Fcgamma receptors: old friends and new family members. Immunity. 2006;24:19–28.

    PubMed  CAS  Google Scholar 

  34. Kaminski MS, Kitamura K, Maloney DG, Campbell MJ, Levy R. Importance of antibody isotype in monoclonal anti-idiotype therapy of a murine B cell lymphoma. A study of hybridoma class switch variants. J Immunol. 1986;136:1123–30.

    PubMed  CAS  Google Scholar 

  35. Kipps TJ, Parham P, Punt J, Herzenberg LA. Importance of immunoglobulin isotype in human antibody-dependent, cell-mediated cytotoxicity directed by murine monoclonal antibodies. J Exp Med. 1985;161:1–17.

    PubMed  CAS  Google Scholar 

  36. Uchida J, Hamaguchi Y, Oliver JA, Ravetch JV, Poe JC, Haas KM, Tedder TF. The innate mononuclear phagocyte network depletes B lymphocytes through Fc receptor-dependent mechanisms during anti-CD20 antibody immunotherapy. J Exp Med. 2004;199:1659–69.

    PubMed  CAS  Google Scholar 

  37. Tedder TF, Baras A, Xiu Y. Fcgamma receptor-dependent effector mechanisms regulate CD19 and CD20 antibody immunotherapies for B lymphocyte malignancies and autoimmunity. Springer Semin Immunopathol. 2006;28:351–64.

    PubMed  CAS  Google Scholar 

  38. Minard-Colin V, Xiu Y, Poe JC, Horikawa M, Magro CM, Hamaguchi Y, Haas KM, Tedder TF. Lymphoma depletion during CD20 immunotherapy in mice is mediated by macrophage FcgammaRI, FcgammaRIII, and FcgammaRIV. Blood. 2008;112:1205–13.

    PubMed  CAS  Google Scholar 

  39. Gong Q, Ou Q, Ye S, Lee WP, Cornelius J, Diehl L, Lin WY, Nguyen K, Tran T, Zhang Y, Rosen H, Martin F. Importance of cellular microenvironment and circulatory dynamics in B cell immunotherapy. J Immunol. 2005;174:817–26.

    PubMed  CAS  Google Scholar 

  40. Green SK, Karlsson MC, Ravetch JV, Kerbel RS. Disruption of cell-cell adhesion enhances antibody-dependent cellular cytotoxicity: implications for antibody-based therapeutics of cancer. Cancer Res. 2002;62:6891–900.

    PubMed  CAS  Google Scholar 

  41. Fossati-Jimack L, Ioan-Facsinay A, Reininger L, Chicheportiche Y, Watanabe N, Saito T, Hofhuis FM, Gessner JE, Schiller C, Schmidt RE, Honjo T, Verbeek JS. Markedly different pathogenicity of four immunoglobulin G isotype-switch variants of an antierythrocyte autoantibody is based on their capacity to interact in vivo with the low-affinity Fcgamma receptor III. J Exp Med. 2000;191:1293–302.

    PubMed  CAS  Google Scholar 

  42. Teeling JL, French RR, Cragg MS, van den Brakel J, Pluyter M, Huang H, Chan C, Parren PW, Hack CE, Dechant M, Valerius T, van de Winkel JG, Glennie MJ. Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas. Blood. 2004;104:1793–800.

    PubMed  CAS  Google Scholar 

  43. Golay J, Manganini M, Facchinetti V, Gramigna R, Broady R, Borleri G, Rambaldi A, Introna M. Rituximab-mediated antibody-dependent cellular cytotoxicity against neoplastic B cells is stimulated strongly by interleukin-2. Haematologica. 2003;88:1002–12.

    PubMed  CAS  Google Scholar 

  44. Cartron G, Ohresser M, Salles G, Solal-Celigny P, Colombat P, Watier H. Neutrophil role in in vivo anti-lymphoma activity of rituximab: FCGR3B-NA1/NA2 polymorphism does not influence response and survival after rituximab treatment. Ann Oncol. 2008;19:1485–7.

    PubMed  CAS  Google Scholar 

  45. Van Rooijen N, Sanders A. Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J Immunol Methods. 1994;174:83–93.

    PubMed  Google Scholar 

  46. Anolik JH, Campbell D, Felgar RE, Young F, Sanz I, Rosenblatt J, Looney RJ. The relationship of FcgammaRIIIa genotype to degree of B cell depletion by rituximab in the treatment of systemic lupus erythematosus. Arthritis Rheum. 2003;48:455–9.

    PubMed  CAS  Google Scholar 

  47. Parren PW. Preparation of genetically engineered monoclonal antibodies for human immunotherapy. Hum Antibodies Hybridomas. 1992;3:137–45.

    PubMed  CAS  Google Scholar 

  48. Hatjiharissi E, Xu L, Santos DD, Hunter ZR, Ciccarelli BT, Verselis S, Modica M, Cao Y, Manning RJ, Leleu X, Dimmock EA, Kortsaris A, Mitsiades C, Anderson KC, Fox EA, Treon SP. Increased natural killer cell expression of CD16, and augmented binding and ADCC activity to rituximab among individuals expressing the Fc{gamma}RIIIA-158 V/V and V/F polymorphism. Blood. 2007;110:2561–4.

    PubMed  CAS  Google Scholar 

  49. Metes D, Ernst LK, Chambers WH, Sulica A, Herberman RB, Morel PA. Expression of functional CD32 molecules on human NK cells is determined by an allelic polymorphism of the FcgammaRIIC gene. Blood. 1998;91:2369–80.

    PubMed  CAS  Google Scholar 

  50. Breunis WB, van Mirre E, Bruin M, Geissler J, de Boer M, Peters M, Roos D, de Haas M, Koene HR, Kuijpers TW. Copy number variation of the activating FCGR2C gene predisposes to idiopathic thrombocytopenic purpura. Blood. 2008;111:1029–38.

    PubMed  CAS  Google Scholar 

  51. Floto RA, Clatworthy MR, Heilbronn KR, Rosner DR, MacAry PA, Rankin A, Lehner PJ, Ouwehand WH, Allen JM, Watkins NA, Smith KG. Loss of function of a lupus-associated FcgammaRIIb polymorphism through exclusion from lipid rafts. Nat Med. 2005;11:1056–8.

    PubMed  CAS  Google Scholar 

  52. Kono H, Kyogoku C, Suzuki T, Tsuchiya N, Honda H, Yamamoto K, Tokunaga K, Zen-ichiro H. FcgammaRIIB Ile232Thr transmembrane polymorphism associated with human systemic lupus erythematosus decreases affinity to lipid rafts and attenuates inhibitory effects on B cell receptor signaling. Hum Mol Genet. 2005;14:2881–92.

    PubMed  CAS  Google Scholar 

  53. Weng WK, Levy R. Genetic polymorphism of the inhibitory IgG Fc receptor FcgammaRIIb is not associated with clinical outcome in patients with follicular lymphoma treated with rituximab. Leuk Lymphoma. 2009;50:723–7.

    PubMed  CAS  Google Scholar 

  54. Willcocks LC, Lyons PA, Clatworthy MR, Robinson JI, Yang W, Newland SA, Plagnol V, McGovern NN, Condliffe AM, Chilvers ER, Adu D, Jolly EC, Watts R, Lau YL, Morgan AW, Nash G, Smith KG. Copy number of FCGR3B, which is associated with systemic lupus erythematosus, correlates with protein expression and immune complex uptake. J Exp Med. 2008;205:1573–82.

    PubMed  CAS  Google Scholar 

  55. Aitman TJ, Dong R, Vyse TJ, Norsworthy PJ, Johnson MD, Smith J, Mangion J, Roberton-Lowe C, Marshall AJ, Petretto E, Hodges MD, Bhangal G, Patel SG, Sheehan-Rooney K, Duda M, Cook PR, Evans DJ, Domin J, Flint J, Boyle JJ, Pusey CD, Cook HT. Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature. 2006;439:851–5.

    PubMed  CAS  Google Scholar 

  56. Fanciulli M, Norsworthy PJ, Petretto E, Dong R, Harper L, Kamesh L, Heward JM, Gough SC, de Smith A, Blakemore AI, Froguel P, Owen CJ, Pearce SH, Teixeira L, Guillevin L, Graham DS, Pusey CD, Cook HT, Vyse TJ, Aitman TJ. FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity. Nat Genet. 2007;39:721–3.

    PubMed  CAS  Google Scholar 

  57. Breunis WB, van Mirre E, Geissler J, Laddach N, Wolbink G, van der Schoot E, de Haas M, de Boer M, Roos D, Kuijpers TW. Copy number variation at the FCGR locus includes FCGR3A, FCGR2C and FCGR3B but not FCGR2A and FCGR2B. Hum Mutat. 2009;30:E640–50.

    PubMed  Google Scholar 

  58. Guyre PM, Morganelli PM, Miller R. Recombinant immune interferon increases immunoglobulin G Fc receptors on cultured human mononuclear phagocytes. J Clin Investig. 1983;72:393–7.

    PubMed  CAS  Google Scholar 

  59. Sivo J, Politis AD, Vogel SN. Differential effects of interferon-gamma and glucocorticoids on Fc gamma R gene expression in murine macrophages. J Leukoc Biol. 1993;54:451–7.

    PubMed  CAS  Google Scholar 

  60. Okayama Y, Kirshenbaum AS, Metcalfe DD. Expression of a functional high-affinity IgG receptor, Fc gamma RI, on human mast cells: Up-regulation by IFN-gamma. J Immunol. 2000;164:4332–9.

    PubMed  CAS  Google Scholar 

  61. Yoshie O, Mellman IS, Broeze RJ, Garcia-Blanco M, Lengyel P. Interferon action: effects of mouse alpha and beta interferons on rosette formation, phagocytosis, and surface-antigen expression of cells of the macrophage-type line RAW 309Cr.1. Cell Immunol. 1982;73:128–40.

    PubMed  CAS  Google Scholar 

  62. Shushakova N, Skokowa J, Schulman J, Baumann U, Zwirner J, Schmidt RE, Gessner JE. C5a anaphylatoxin is a major regulator of activating versus inhibitory FcgammaRs in immune complex-induced lung disease. J Clin Investig. 2002;110:1823–30.

    PubMed  CAS  Google Scholar 

  63. Dovedi SJ, Melis MH, Wilkinson RW, Adlard AL, Stratford IJ, Honeychurch J, Illidge TM. Systemic delivery of a TLR7 agonist in combination with radiation primes durable anti-tumor immune responses in mouse models of lymphoma. Blood. 2012;121:251–9.

    PubMed  Google Scholar 

  64. Tridandapani S, Wardrop R, Baran CP, Wang Y, Opalek JM, Caligiuri MA, Marsh CB. TGF-beta 1 suppresses [correction of supresses] myeloid Fc gamma receptor function by regulating the expression and function of the common gamma-subunit. J Immunol. 2003;170:4572–7.

    PubMed  CAS  Google Scholar 

  65. Pricop L, Redecha P, Teillaud JL, Frey J, Fridman WH, Sautes-Fridman C, Salmon JE. Differential modulation of stimulatory and inhibitory Fc gamma receptors on human monocytes by Th1 and Th2 cytokines. J Immunol. 2001;166:531–7.

    PubMed  CAS  Google Scholar 

  66. te Velde AA, Huijbens RJ, de Vries JE, Figdor CG. IL-4 decreases Fc gamma R membrane expression and Fc gamma R-mediated cytotoxic activity of human monocytes. J Immunol. 1990;144:3046–51.

    Google Scholar 

  67. Rudge EU, Cutler AJ, Pritchard NR, Smith KG. Interleukin 4 reduces expression of inhibitory receptors on B cells and abolishes CD22 and Fc gamma RII-mediated B cell suppression. J Exp Med. 2002;195:1079–85.

    PubMed  CAS  Google Scholar 

  68. Witz IP, Ran M. FcR may function as a progression factor of nonlymphoid tumors. Immunol Res. 1992;11:283–95.

    PubMed  CAS  Google Scholar 

  69. Ilfeld D, Barzilay J, Dux Z, Ran M. Correlation of Fc gamma receptors on peripheral blood mononuclear cells and survival in patients with metastatic breast cancer. Breast Cancer Res Treat. 1986;7:181–6.

    PubMed  CAS  Google Scholar 

  70. Ran M, Teillaud JL, Fridman WH, Frenkel H, Halachmi E, Katz B, Gips M, Shlomo Y, Barzilay J, Witz IP. Increased expression of Fc gamma receptor in cancer patients and tumor bearing mice. Mol Immunol. 1988;25:1159–67.

    PubMed  CAS  Google Scholar 

  71. Svennevig JL, Andersson TR. Cells bearing Fc receptors in human malignant solid tumours. Br J Cancer. 1982;45:201–8.

    PubMed  CAS  Google Scholar 

  72. Ran M, Dux Z, Anavi R, Witz IP. Expression of Fc gamma receptors on a subpopulation of nonlymphoid tumor cells and its enrichment. J Natl Cancer Inst. 1984;73:437–46.

    PubMed  CAS  Google Scholar 

  73. Callanan MB, Le Baccon P, Mossuz P, Duley S, Bastard C, Hamoudi R, Dyer MJ, Klobeck G, Rimokh R, Sotto JJ, Leroux D. The IgG Fc receptor, FcgammaRIIB, is a target for deregulation by chromosomal translocation in malignant lymphoma. Proc Natl Acad Sci USA. 2000;97:309–14.

    PubMed  CAS  Google Scholar 

  74. Berko-Flint Y, Fridman WH, Grossman-Atlas E, Kimchi N, Ben-Baruch AL, Moss S, Teillaud JL, Witz IP, Ran M. Some cellular and molecular characteristics of high and low tumorigenicity variants of polyoma-virus transformed cells. Mol Immunol. 1990;27:1219–28.

    PubMed  CAS  Google Scholar 

  75. Zusman T, Gohar O, Eliassi H, Avivi Y, Lisansky E, Sautes C, Even J, Bonnerot C, Fridman WH, Witz IP, Ran M. The murine Fc-gamma (Fc gamma) receptor type II B1 is a tumorigenicity-enhancing factor in polyoma-virus-transformed 3T3 cells. Int J Cancer. 1996;65:221–9.

    PubMed  CAS  Google Scholar 

  76. Zusman T, Lisansky E, Arons E, Anavi R, Bonnerot C, Sautes C, Fridman WH, Witz IP, Ran M. Contribution of the intracellular domain of murine Fc-gamma receptor type IIB1 to its tumor-enhancing potential. Int J Cancer. 1996;68:219–27.

    PubMed  CAS  Google Scholar 

  77. Langer AB, Emmanuel N, Even J, Fridman WH, Gohar O, Gonen B, Katz BZ, Ran M, Smorodinsky NI, Witz IP. Phenotypic properties of 3T3 cells transformed in vitro with polyoma virus and passaged once in syngeneic animals. Immunobiology. 1992;185:281–91.

    PubMed  CAS  Google Scholar 

  78. Cassard L, Cohen-Solal JF, Fournier EM, Camilleri-Broët S, Spatz A, Chouaïb S, Badoual C, Varin A, Fisson S, Duvillard P, Boix C, Loncar SM, Sastre-Garau X, Houghton AN, Avril MF, Gresser I, Fridman WH, Sautès-Fridman C. Selective expression of inhibitory Fcgamma receptor by metastatic melanoma impairs tumor susceptibility to IgG-dependent cellular response. Int J Cancer. 2008;123:2832–9.

    PubMed  CAS  Google Scholar 

  79. Camilleri-Broet S, Cassard L, Broet P, Delmer A, Le Touneau A, Diebold J, Fridman WH, Molina TJ, Sautès-Fridman C. FcgammaRIIB is differentially expressed during B cell maturation and in B-cell lymphomas. Br J Haematol. 2004;124:55–62.

    PubMed  CAS  Google Scholar 

  80. Neauport-Sautes C, Daeron M, Teillaud JL, Blank U, Fridman WH. The occurrence, structural and functional properties of immunoglobulin Fc receptors on murine neoplastic cells. Int Rev Immunol. 1986;1:237–71.

    PubMed  CAS  Google Scholar 

  81. Eshel R, Neumark E, Sagi-Assif O, Witz IP. Receptors involved in microenvironment-driven molecular evolution of cancer cells. Semin Cancer Biol. 2002;12:139–47.

    PubMed  CAS  Google Scholar 

  82. Cassard L, Cohen-Solal JF, Galinha A, Sastre-Garau X, Mathiot C, Galon J, Dorval T, Bernheim A, Fridman WH, Sautès-Fridman C. Modulation of tumor growth by inhibitory Fc(gamma) receptor expressed by human melanoma cells. J Clin Investig. 2002;110:1549–57.

    PubMed  CAS  Google Scholar 

  83. Ran M, Langer AB, Eliassi I, Gohar O, Gonen B, Gradsztajn S, Fridman WH, Teillaud JL, Witz IP. Possibilities of interference with the immune system of tumor bearers by non-lymphoid Fc gamma RII expressing tumor cells. Immunobiology. 1992;185:415–25.

    PubMed  CAS  Google Scholar 

  84. Cragg MS, Morgan SM, Chan HT, Morgan BP, Filatov AV, Johnson PW, French RR, Glennie MJ. Complement-mediated lysis by anti-CD20 mAb correlates with segregation into lipid rafts. Blood. 2003;101:1045–52.

    PubMed  CAS  Google Scholar 

  85. Lee CA-K, Margaret; Cogliatti S, Crowe S, Cragg MS, Schmitz S-FH, Ghielmini M, Johnson PW. Expression of inhibitory Fc receptor (Fc!RIIB) Is a marker of poor response to Rituximab monotherapy in follicular lymphoma (FL). ASH abstract 50396 2012.

    Google Scholar 

  86. Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006;124:263–6.

    PubMed  CAS  Google Scholar 

  87. Mantovani A, Sica A, Allavena P, Garlanda C, Locati M. Tumor-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation. Hum Immunol. 2009;70:325–30.

    PubMed  CAS  Google Scholar 

  88. Sica A, Schioppa T, Mantovani A, Allavena P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer. 2006;42:717–27.

    PubMed  CAS  Google Scholar 

  89. Canioni D, Salles G, Mounier N, Brousse N, Keuppens M, Morchhauser F, Lamy T, Sonet A, Rousselet MC, Foussard C, Xerri L. High numbers of tumor-associated macrophages have an adverse prognostic value that can be circumvented by rituximab in patients with follicular lymphoma enrolled onto the GELA-GOELAMS FL-2000 trial. J Clin Oncol. 2008;26:440–6.

    PubMed  CAS  Google Scholar 

  90. Edwards JP, Zhang X, Frauwirth KA, Mosser DM. Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol. 2006;80:1298–307.

    PubMed  CAS  Google Scholar 

  91. Beum PV, Mack DA, Pawluczkowycz AW, Lindorfer MA, Taylor RP. Binding of rituximab, trastuzumab, cetuximab, or mAb T101 to cancer cells promotes trogocytosis mediated by THP-1 cells and monocytes. J Immunol. 2008;181:8120–32.

    PubMed  CAS  Google Scholar 

  92. Jones JD, Hamilton BJ, Rigby WF. Rituximab mediates loss of CD19 on B cells in the absence of cell death. Arthritis Rheum. 2012;64:3111–8.

    PubMed  CAS  Google Scholar 

  93. Beum PV, Lindorfer MA, Taylor RP. Within peripheral blood mononuclear cells, antibody-dependent cellular cytotoxicity of rituximab-opsonized Daudi cells is promoted by NK cells and inhibited by monocytes due to shaving. J Immunol. 2008;181:2916–24.

    PubMed  CAS  Google Scholar 

  94. Boross P, Jansen JH, Pastula A, van der Poel CE, Leusen JH. Both activating and inhibitory Fc gamma receptors mediate rituximab-induced trogocytosis of CD20 in mice. Immunol Lett. 2012;143:44–52.

    PubMed  CAS  Google Scholar 

  95. Pedersen AE, Jungersen MB, Pedersen CD. Monocytes mediate shaving of B-cell-bound anti-CD20 antibodies. Immunology. 2011;133:239–45.

    PubMed  CAS  Google Scholar 

  96. Taylor RP, Lindorfer MA. Impact of low-dose rituximab on splenic B cells: evidence for the shaving reaction. Transpl Int. 2010;23:116–7.

    PubMed  Google Scholar 

  97. O’Brien SM, Kantarjian H, Thomas DA, Giles FJ, Freireich EJ, Cortes J, Lerner S, Keating MJ. Rituximab dose-escalation trial in chronic lymphocytic leukemia. J Clin Oncol. 2001;19:2165–70.

    PubMed  Google Scholar 

  98. Coiffier B, Lepretre S, Pedersen LM, Gadeberg O, Fredriksen H, van Oers MH, Wooldridge J, Kloczko J, Holowiecki J, Hellmann A, Walewski J, Flensburg M, Petersen J, Robak T. Safety and efficacy of ofatumumab, a fully human monoclonal anti-CD20 antibody, in patients with relapsed or refractory B-cell chronic lymphocytic leukemia: a phase 1–2 study. Blood. 2008;111:1094–100.

    PubMed  CAS  Google Scholar 

  99. Stavenhagen JB, Gorlatov S, Tuaillon N, Rankin CT, Li H, Burke S, Huang L, Vijh S, Johnson S, Bonvini E, Koenig S. Fc optimization of therapeutic antibodies enhances their ability to kill tumor cells in vitro and controls tumor expansion in vivo via low-affinity activating Fcgamma receptors. Cancer Res. 2007;67:8882–90.

    PubMed  CAS  Google Scholar 

  100. Stavenhagen JB, Gorlatov S, Tuaillon N, Rankin CT, Li H, Burke S, Huang L, Johnson S, Koenig S, Bonvini E. Enhancing the potency of therapeutic monoclonal antibodies via Fc optimization. Adv Enzyme Regul. 2008;48:152–64.

    PubMed  CAS  Google Scholar 

  101. Shields RL, Namenuk AK, Hong K, Meng YG, Rae J, Briggs J, Xie D, Lai J, Stadlen A, Li B, Fox JA, Presta LG. High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R. J Biol Chem. 2001;276:6591–604.

    PubMed  CAS  Google Scholar 

  102. Lazar GA, Dang W, Karki S, Vafa O, Peng JS, Hyun L, Chan C, Chung HS, Eivazi A, Yoder SC, Vielmetter J, Carmichael DF, Hayes RJ, Dahiyat BI. Engineered antibody Fc variants with enhanced effector function. Proc Natl Acad Sci USA. 2006;103:4005–10.

    PubMed  CAS  Google Scholar 

  103. Horton HM, Bernett MJ, Pong E, Peipp M, Karki S, Chu SY, Richards JO, Vostiar I, Joyce PF, Repp R, Desjarlais JR, Zhukovsky EA. Potent in vitro and in vivo activity of an Fc-engineered anti-CD19 monoclonal antibody against lymphoma and leukemia. Cancer Res. 2008;68:8049–57.

    PubMed  CAS  Google Scholar 

  104. Stavenhagen JB, Gorlatov S, Tuaillon N, Rankin CT, Li H, Burke S, Huang L, Vijh S, Johnson S, Bonvini E, Koenig S. Fc optimization of therapeutic antibodies enhances their ability to kill tumor cells in vitro and controls tumor expansion in vivo via low-affinity activating Fcgamma receptors. Cancer Res. 2007;67:8882–90.

    PubMed  CAS  Google Scholar 

  105. Umana P, Jean-Mairet J, Moudry R, Amstutz H, Bailey JE. Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat Biotechnol. 1999;17:176–80.

    PubMed  CAS  Google Scholar 

  106. Shields RL, Lai J, Keck R, O’Connell LY, Hong K, Meng YG, Weikert SH, Presta LG. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem. 2002;277:26733–40.

    PubMed  CAS  Google Scholar 

  107. Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M, Uchida K, Anazawa H, Satoh M, Yamasaki M, Hanai N, Shitara K. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem. 2003;278:3466–73.

    PubMed  CAS  Google Scholar 

  108. Mossner E, Brunker P, Moser S, Puntener U, Schmidt C, Herter S, Grau R, Gerdes C, Nopora A, van Puijenbroek E, Ferrara C, Sondermann P, Jäger C, Strein P, Fertig G, Friess T, Schüll C, Bauer S, Dal Porto J, Del Nagro C, Dabbagh K, Dyer MJ, Poppema S, Klein C, Umaña P. Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity. Blood. 2010;115:4393–402.

    PubMed  CAS  Google Scholar 

  109. Veri MC, Gorlatov S, Li H, Burke S, Johnson S, Stavenhagen J, Stein KE, Bonvini E, Koenig S. Monoclonal antibodies capable of discriminating the human inhibitory Fcgamma-receptor IIB (CD32B) from the activating Fcgamma-receptor IIA (CD32A): biochemical, biological and functional characterization. Immunology. 2007;121:392–404.

    PubMed  CAS  Google Scholar 

  110. Rankin CT, Veri MC, Gorlatov S, Tuaillon N, Burke S, Huang L, Inzunza HD, Li H, Thomas S, Johnson S, Stavenhagen J, Koenig S, Bonvini E. CD32B, the human inhibitory Fc-gamma receptor IIB, as a target for monoclonal antibody therapy of B-cell lymphoma. Blood. 2006;108:2384–91.

    PubMed  CAS  Google Scholar 

  111. Williams EL, Tutt AL, French RR, Chan HT, Lau B, Penfold CA, Mockridge CI, Roghanian A, Cox KL, Verbeek JS, Glennie MJ, Cragg MS. Development and characterisation of monoclonal antibodies specific for the murine inhibitory FcgammaRIIB (CD32B). Eur J Immunol. 2012;42:2109–20.

    PubMed  CAS  Google Scholar 

  112. Lee CCM, Glennie M, Johnson P. Novel monoclonal antibody approaches to cancer immunotherapy. Br J Clinic Pharmacol, 2012.

    Google Scholar 

  113. White AL, Chan HT, Roghanian A, French RR, Mockridge CI, Tutt AL, Dixon SV, Ajona D, Verbeek JS, Al-Shamkhani A, Cragg MS, Beers SA, Glennie MJ. Interaction with FcgammaRIIB is critical for the agonistic activity of anti-CD40 monoclonal antibody. J Immunol. 2011;187:1754–63.

    PubMed  CAS  Google Scholar 

  114. Li F, Ravetch JV. Inhibitory Fcgamma receptor engagement drives adjuvant and anti-tumor activities of agonistic CD40 antibodies. Science. 2011;333:1030–4.

    PubMed  CAS  Google Scholar 

  115. Li F, Ravetch JV. Apoptotic and antitumor activity of death receptor antibodies require inhibitory Fcgamma receptor engagement. Proc Natl Acad Sci USA. 2012;109:10966–71.

    PubMed  CAS  Google Scholar 

  116. Dhodapkar KM, Kaufman JL, Ehlers M, Banerjee DK, Bonvini E, Koenig S, Steinman RM, Ravetch JV, Dhodapkar MV. Selective blockade of inhibitory Fcgamma receptor enables human dendritic cell maturation with IL-12p70 production and immunity to antibody-coated tumor cells. Proc Natl Acad Sci USA. 2005;102:2910–5.

    PubMed  CAS  Google Scholar 

  117. Desai DD, Harbers SO, Flores M, Colonna L, Downie MP, Bergtold A, Jung S, Clynes R. Fc{gamma} receptor IIB on dendritic cells enforces peripheral tolerance by inhibiting effector T cell responses. J Immunol. 2007;178:6217–26.

    PubMed  CAS  Google Scholar 

  118. Dhodapkar KM, Banerjee D, Connolly J, Kukreja A, Matayeva E, Veri MC, Ravetch JV, Steinman RM, Dhodapkar MV. Selective blockade of the inhibitory Fcgamma receptor (FcgammaRIIB) in human dendritic cells and monocytes induces a type I interferon response program. J Exp Med. 2007;204:1359–69.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all of the members of the Antibody and Vaccine Group, past and present and in particular the members of the CD20 and FcγR teams. We also apologise to those authors whose work has not been cited in this review due to space limitations.

Conflict Statements:

Prof Cragg serves as a consultant for Bioinvent International and has previously served as an ad hoc consultant for Roche. MJG acts as a consultant to a number of biotech companies to write general antibody expert reports; he receives institutional payments and royalties from antibody patents and licenses. PWJ acts as a consultant to Roche and Pfizer and has received payments for lectures from Millennium Takeda and Pfizer. JCS has acted as a consultant for oxford gene technologies and received research funding from Roche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. Cragg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Williams, E.L. et al. (2013). Overcoming Resistance to Therapeutic Antibodies by Targeting Fc Receptors. In: Bonavida, B. (eds) Resistance to Immunotherapeutic Antibodies in Cancer. Resistance to Targeted Anti-Cancer Therapeutics, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7654-2_3

Download citation

Publish with us

Policies and ethics