Convex Analysis

  • Robert J. Vanderbei
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 196)

Abstract

This book is mostly about linear programming. However, this subject, important as it is, is just a subset of a larger subject called convex analysis. In this chapter, we shall give a brief introduction to this broader subject. In particular, we shall prove a few of the fundamental results of convex analysis and see that their proofs depend on some of the theory of linear programming that we have already developed.

Keywords

Hull 

Bibliography

  1. Carathéodory, C. (1907). Über den variabilitätsbereich der koeffizienten von potenzreihen, die gegebene werte nicht annehmen. Mathematische Annalen, 64, 95–115.CrossRefGoogle Scholar
  2. Farkas, J. (1902). Theorie der einfachen Ungleichungen. Journal für die reine und angewandte Mathematik, 124, 1–27.Google Scholar
  3. Gordan, P. (1873). Über die Auflösung linearer Gleichungen mit reelen coefficienten. Mathematische Annalen, 6, 23–28.CrossRefGoogle Scholar
  4. Rockafellar, R. (1970). Convex analysis. Princeton: Princeton University Press.CrossRefGoogle Scholar
  5. Stiemke, E. (1915). Über positive Lösungen homogener linearer Gleichungen. Mathematische Annalen, 76, 340–342.CrossRefGoogle Scholar
  6. Tucker, A. (1956). Dual systems of homogeneous linear equations. Annals of Mathematics Studies, 38, 3–18.Google Scholar
  7. Ville, J. (1938). Sur la théorie général des jeux ou intervient l’habileté des jouers. In E. Borel (Ed.), Traité du Calcul des probabilités et des ses applications. Paris: Gauthiers-Villars.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Robert J. Vanderbei
    • 1
  1. 1.Department of Operations Research and Financial EngineeringPrinceton UniversityPrincetonUSA

Personalised recommendations