Microelectrode Voltage Clamp: The Cardiac Purkinje Fiber

  • Robert S. Kass
  • Paul B. Bennett


Cardiac muscle, like skeletal muscle and nerves, is electrically excitable. Local stimulation by a brief electrical shock of adequate strength generates an impulse that propagates in a regenerative manner to distal regions. Although the diversity of electrical activity in the heart contrasts with the homogeneity of nerve and skeletal muscle action potentials, cardiac electrical impulses are generated by membrane permeability changes that generally resemble those in other excitable cells.


Voltage Clamp Membrane Current Membrane Conductance Electrode Spacing Voltage Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adrian, R. H., W. K. Chandler, and A. L. Hodgkin. Voltage clamp experiments in striated muscle fibres. J. Physiol. London 208: 607–644, 1970.PubMedGoogle Scholar
  2. 2.
    Colatsky, T. J. Voltage clamp measurements of sodium channel properties in rabbit cardiac Purkinje fibres. J. Physiol. London 305: 215–234, 1980.PubMedGoogle Scholar
  3. 3.
    Colatsky, T. J., and R. W. Tsien. Sodium channels in rabbit cardiac Purkinje fibres. Nature London 278: 265–268, 1979.PubMedCrossRefGoogle Scholar
  4. 4.
    Corson, D. W., S. Goodman, and A. Fein. An adaptation of the jet stream microelectrode beveler. Science 205: 1302, 1979.PubMedCrossRefGoogle Scholar
  5. 5.
    Deck, K. A., R. Kern, and W. Trautwein. Voltage clamp technique in mammalian cardiac fibers. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 280: 50–62, 1964.CrossRefGoogle Scholar
  6. 6.
    DiFrancesco, D., and P. A. McNaughton. The effects of calcium on outward membrane currents in the cardiac Purkinje fibre. J. Physiol. London 289: 347–373, 1979.PubMedGoogle Scholar
  7. 7.
    Fozzard, H. A., and G. W. Beeler. The voltage clamp and cardiac electrophysiology. Circ. Res. 37: 403–413, 1975.PubMedCrossRefGoogle Scholar
  8. 8.
    Hodgkin, A. L., and W. A. H. Rushton. The electrical constants of a crustacean nerve fiber. Proc. R. Soc. London Ser. B 133: 444–479, 1946.CrossRefGoogle Scholar
  9. 9.
    Isenberg, G., and U. Klockner. Calcium currents of isolated bovine ventricular myocytes are fast and of large amplitude. Pfluegers Arch. 395: 30–41, 1982.CrossRefGoogle Scholar
  10. 10.
    Jack, J. J. B., D. Noble, and R. W. Tsien. Electrical Current Flow in Excitable Cells. Oxford, UK: Oxford Univ. Press, 1975.Google Scholar
  11. 11.
    Kass, R. S., and T. Scheuer. Calcium ions and cardiac electrophysiology. In: Calcium Blockers: Mechanisms of Action and Clinical Applications, edited by S. F. Flaim and R. Zelis. Baltimore, MD: Urban and Schwarzenberg, 1982 p. 3–19.Google Scholar
  12. 12.
    Kass, R. S., T. Scheuer, and K. J. Malloy. Block of outward current in cardiac Purkinje fibers by injection of quaternary ammonium ions. J. Gen. Physiol. 79: 1041–1063, 1982.PubMedCrossRefGoogle Scholar
  13. 13.
    Kass, R. S., S. A. Siegelbaum, and R. W. Tsien. Three-microelectrode voltage clamp experiments in calf cardiac Purkinje fibers: is slow inward current adequately measured? J. Physiol. London 290: 201–225, 1979.PubMedGoogle Scholar
  14. 14.
    Lederer, W. J., A. J. Spindler, and D. A. Eisner. Thick slurry beveling. A new technique for beveling extremely fine microelectrodes and micropipettes. Pfluegers Arch. 381: 287–288, 1979.CrossRefGoogle Scholar
  15. 15.
    Reuter, H., and A. Scholz. A study of the ion selectivity and the kinetic properties of the calcium dependent slow inward current in mammalian cardiac muscle. J. Physiol. London 264: 17–47, 1977.PubMedGoogle Scholar
  16. 16.
    Schneider, M. F., and W. K. Chandler. Effects of membrane potential on the capacitance of skeletal muscle fibers. J. Gen. Physiol. 67: 125–163, 1976.PubMedCrossRefGoogle Scholar
  17. 17.
    Tsien, R. W. Effects of epinephrine on the pacemaker current of cardiac Purkinje fibers. J. Gen Physiol. 64: 293–319, 1974.PubMedCrossRefGoogle Scholar
  18. 18.
    Tsien, R. W., and S. Siegelbaum. Excitable tissues: the heart. In: The Physiological Basis for Disorder of Biomembranes, edited by T. Andreoli, J. F. Hoffman, and D. Fanestil. New York: Plenum, 1978, p. 517–538.CrossRefGoogle Scholar
  19. 19.
    Weidmann, S. The electrical constants of Purkinje fibres. J. Physiol. London 118: 348360, 1952.Google Scholar
  20. 20.
    Weidmann, S. Cardiac electrophysiology in the light of recent morphological findings. Harvey Lect. 61: 1–15, 1966.Google Scholar

Copyright information

© American Physiological Society 1985

Authors and Affiliations

  • Robert S. Kass
    • 1
  • Paul B. Bennett
    • 1
  1. 1.Department of PhysiologyUniversity of Rochester School of Medicine and DentistryRochesterUSA

Personalised recommendations