Skip to main content

Microelectrode Voltage Clamp: The Cardiac Purkinje Fiber

  • Chapter
Book cover Voltage and Patch Clamping with Microelectrodes

Abstract

Cardiac muscle, like skeletal muscle and nerves, is electrically excitable. Local stimulation by a brief electrical shock of adequate strength generates an impulse that propagates in a regenerative manner to distal regions. Although the diversity of electrical activity in the heart contrasts with the homogeneity of nerve and skeletal muscle action potentials, cardiac electrical impulses are generated by membrane permeability changes that generally resemble those in other excitable cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian, R. H., W. K. Chandler, and A. L. Hodgkin. Voltage clamp experiments in striated muscle fibres. J. Physiol. London 208: 607–644, 1970.

    PubMed  CAS  Google Scholar 

  2. Colatsky, T. J. Voltage clamp measurements of sodium channel properties in rabbit cardiac Purkinje fibres. J. Physiol. London 305: 215–234, 1980.

    PubMed  CAS  Google Scholar 

  3. Colatsky, T. J., and R. W. Tsien. Sodium channels in rabbit cardiac Purkinje fibres. Nature London 278: 265–268, 1979.

    Article  PubMed  CAS  Google Scholar 

  4. Corson, D. W., S. Goodman, and A. Fein. An adaptation of the jet stream microelectrode beveler. Science 205: 1302, 1979.

    Article  PubMed  CAS  Google Scholar 

  5. Deck, K. A., R. Kern, and W. Trautwein. Voltage clamp technique in mammalian cardiac fibers. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 280: 50–62, 1964.

    Article  CAS  Google Scholar 

  6. DiFrancesco, D., and P. A. McNaughton. The effects of calcium on outward membrane currents in the cardiac Purkinje fibre. J. Physiol. London 289: 347–373, 1979.

    PubMed  CAS  Google Scholar 

  7. Fozzard, H. A., and G. W. Beeler. The voltage clamp and cardiac electrophysiology. Circ. Res. 37: 403–413, 1975.

    Article  PubMed  CAS  Google Scholar 

  8. Hodgkin, A. L., and W. A. H. Rushton. The electrical constants of a crustacean nerve fiber. Proc. R. Soc. London Ser. B 133: 444–479, 1946.

    Article  Google Scholar 

  9. Isenberg, G., and U. Klockner. Calcium currents of isolated bovine ventricular myocytes are fast and of large amplitude. Pfluegers Arch. 395: 30–41, 1982.

    Article  CAS  Google Scholar 

  10. Jack, J. J. B., D. Noble, and R. W. Tsien. Electrical Current Flow in Excitable Cells. Oxford, UK: Oxford Univ. Press, 1975.

    Google Scholar 

  11. Kass, R. S., and T. Scheuer. Calcium ions and cardiac electrophysiology. In: Calcium Blockers: Mechanisms of Action and Clinical Applications, edited by S. F. Flaim and R. Zelis. Baltimore, MD: Urban and Schwarzenberg, 1982 p. 3–19.

    Google Scholar 

  12. Kass, R. S., T. Scheuer, and K. J. Malloy. Block of outward current in cardiac Purkinje fibers by injection of quaternary ammonium ions. J. Gen. Physiol. 79: 1041–1063, 1982.

    Article  PubMed  CAS  Google Scholar 

  13. Kass, R. S., S. A. Siegelbaum, and R. W. Tsien. Three-microelectrode voltage clamp experiments in calf cardiac Purkinje fibers: is slow inward current adequately measured? J. Physiol. London 290: 201–225, 1979.

    PubMed  CAS  Google Scholar 

  14. Lederer, W. J., A. J. Spindler, and D. A. Eisner. Thick slurry beveling. A new technique for beveling extremely fine microelectrodes and micropipettes. Pfluegers Arch. 381: 287–288, 1979.

    Article  CAS  Google Scholar 

  15. Reuter, H., and A. Scholz. A study of the ion selectivity and the kinetic properties of the calcium dependent slow inward current in mammalian cardiac muscle. J. Physiol. London 264: 17–47, 1977.

    PubMed  CAS  Google Scholar 

  16. Schneider, M. F., and W. K. Chandler. Effects of membrane potential on the capacitance of skeletal muscle fibers. J. Gen. Physiol. 67: 125–163, 1976.

    Article  PubMed  CAS  Google Scholar 

  17. Tsien, R. W. Effects of epinephrine on the pacemaker current of cardiac Purkinje fibers. J. Gen Physiol. 64: 293–319, 1974.

    Article  PubMed  CAS  Google Scholar 

  18. Tsien, R. W., and S. Siegelbaum. Excitable tissues: the heart. In: The Physiological Basis for Disorder of Biomembranes, edited by T. Andreoli, J. F. Hoffman, and D. Fanestil. New York: Plenum, 1978, p. 517–538.

    Chapter  Google Scholar 

  19. Weidmann, S. The electrical constants of Purkinje fibres. J. Physiol. London 118: 348360, 1952.

    Google Scholar 

  20. Weidmann, S. Cardiac electrophysiology in the light of recent morphological findings. Harvey Lect. 61: 1–15, 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 American Physiological Society

About this chapter

Cite this chapter

Kass, R.S., Bennett, P.B. (1985). Microelectrode Voltage Clamp: The Cardiac Purkinje Fiber. In: Smith, T.G., Lecar, H., Redman, S.J., Gage, P.W. (eds) Voltage and Patch Clamping with Microelectrodes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7601-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7601-6_8

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7601-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics