Advertisement

Current Status of Fabrication of Solid Oxide Fuel Cells for Emission-Free Energy Conversion

  • Ayhan SarikayaEmail author
  • Aligul Buyukaksoy
  • Fatih Dogan
Chapter

Abstract

Solid oxide fuel cells (SOFCs) are promising energy conversion devices due to their environment friendly operation with relatively high efficiencies (=60 %). High power densities and stability upon interruption of fuel supply are required to realize the applications of the SOFC technology. The two main approaches for SOFC fabrication, namely; co-sintering of powders and infiltration of catalytically active components into porous scaffolds are described. It is stressed that the fabrication technique determines the performance of the SOFCs. Co-sintering of powders allow achieving high power densities while infiltration technique yields SOFC that show no performance degradation upon fuel interruption.

Keywords

Energy conversion Solid oxide fuel cells Fabrication techniques Electrochemical performance Fabrication Co-sintering of powders Infiltration Catalytically active components Porous scaffolds Power density Degradation Fuel interruption 

References

  1. 1.
    Stambouli AB, Traversa E (2002) Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew Sustain Energ Rev 6:433–455CrossRefGoogle Scholar
  2. 2.
    Minh NQ (1993) Ceramic fuel cells. J Am Ceram Soc 76:563–588CrossRefGoogle Scholar
  3. 3.
    Sarikaya A, Petrovsky V, Dogan F (2012) Effect of anode microstructure on the enhanced performance of solid oxide fuel cells. Int J Hydrogen Energ 37:11370–11377CrossRefGoogle Scholar
  4. 4.
    Jiang Y, Virkar AV (2001) A high performance, anode-supported solid oxide fuel cell operating on direct alcohol. J Electrochem Soc 148:A706–A709CrossRefGoogle Scholar
  5. 5.
    Zhao F, Virkar AV (2005) Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters. J Power Sources 141:79–95CrossRefGoogle Scholar
  6. 6.
    Buyukaksoy A, Petrovsky V, Dogan F (2012) Redox stable solid oxide fuel cells with Ni-YSZ cermet anodes prepared by polymeric precursor infiltration. J Electrochem Soc 159:B232–B234CrossRefGoogle Scholar
  7. 7.
    Buyukaksoy A, Petrovsky V, Dogan F (2012) Stability and performance of solid oxide fuel cells with nanocomposite electrodes. J Electrochem Soc 159:B666–B669CrossRefGoogle Scholar
  8. 8.
    Buyukaksoy A, Petrovsky V, Dogan F (2012) Optimization of redox stable Ni-YSZ anodes for SOFCs by two-step infiltration. J Electrochem Soc 159:F841–F848CrossRefGoogle Scholar
  9. 9.
    Sarikaya A, Dogan F (2012) Effect of various pore formers on the microstructural development of tape-cast porous ceramics. Ceram Int 39:403–413CrossRefGoogle Scholar
  10. 10.
    Wilson JR, Barnett SA (2008) Solid oxide fuel cell Ni–YSZ anodes: effect of composition on microstructure and performance. J Electrochem Soc 11:B181–B185Google Scholar
  11. 11.
    Suzuki T, Hasan Z, Funahashi Y et al (2009) Impact of anode microstructure on solid oxide fuel cells. Science 325:852–855CrossRefGoogle Scholar
  12. 12.
    Petrovsky V, Jasinski P, Anderson HU et al (2005) Influence of the grain boundaries on conductivity of yttrium stabilized zirconia. MRS Proc 835:187–192Google Scholar
  13. 13.
    Tangtrakarn N, Swanson M, Moran P et al (2007) Sintering behavior and phase characterization of composite perovskite/fluorite ceramics for intermediate temperature SOFCs and oxygen separation membranes. MRS Proc 972:187–192Google Scholar
  14. 14.
    Jiang SP (2008) Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review. J Mater Sci 43:6799–6833CrossRefGoogle Scholar
  15. 15.
    Choi JH, Jang JH, Oh SM (2001) Microstructure and cathodic performance of La0.9Sr0.1MnO3/yttria-stabilized zirconia composite electrodes. Electrochim Acta 46:867–874CrossRefGoogle Scholar
  16. 16.
    Chervin C, Glass RS, Kauzlarich SM (2005) Chemical degradation of La1-xSrxMnO 3/Y2O3-stabilized ZrO2 composite cathodes in the presence of current collector pastes. Solid State Ion 176:17–23CrossRefGoogle Scholar
  17. 17.
    Sarikaya A, Petrovsky V, Dogan F (2012) Effect of microstructural evolution on the electrochemical properties of high performance SOFCs. ECS Trans 45:25–32CrossRefGoogle Scholar
  18. 18.
    Sarantaridis D, Atkinson A (2007) Redox cycling of Ni-based solid oxide fuel cell anodes: a review. Fuel Cell 7:246–258CrossRefGoogle Scholar
  19. 19.
    Klemensø T, Mogensen M (2007) Ni-YSZ solid oxide fuel cell anode behavior upon redox cycling based on electrical characterization. J Am Ceram Soc 90:3582–3588CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ayhan Sarikaya
    • 1
    Email author
  • Aligul Buyukaksoy
    • 2
  • Fatih Dogan
    • 2
  1. 1.Saint-Gobain Research and Development CenterNorthboroughUSA
  2. 2.Department of Materials Science and EngineeringMissouri University of Science and TechnologyRollaUSA

Personalised recommendations