Comparative Environmental Impact Assessment of Nuclear-Based Hydrogen Production via Mg–Cl and Cu–Cl Thermochemical Water Splitting Cycles

  • Ahmet OzbilenEmail author
  • Ibrahim Dincer
  • Marc A. Rosen


The environmental impacts of nuclear-based hydrogen production processes are evaluated and compared, considering magnesium–chlorine (Mg–Cl) and copper–chlorine (Cu–Cl) thermochemical water decomposition cycles and using life cycle analysis. Variations of environmental impacts (acidification potential and global warming potential) with hydrogen production plant lifetime are reported. An artificial neural network model is used to develop the results. Relations between environmental impacts and economic factors are also presented using the social cost of carbon concept. The results show that the Cu–Cl thermochemical cycle has lower acidification and global warming potentials per unit mass of hydrogen produced compared to the Mg–Cl thermochemical cycle due to its lower electrical work requirement.


Hydrogen production Thermochemical water splitting Copper–chlorine cycle Magnesium–chlorine cycle Life cycle assessment Artificial neural network Environmental impact assessment Nuclear Mg–Cl Thermochemical water splitting cycle Life cycle analysis Acidification potential Global warming potential Artificial neural network model Economic factors Acidification Global warming potential 



Weights of ANN


Inputs of ANN


Outputs of ANN

Greek Symbols


Activation function


Summation function



Artificial neural network


Acidification potential


Atomic Energy of Canada Limited


The Center of Environmental Science of Leiden University


Direct current


Greenhouse gas


Global warming potential


High temperature electrolysis


International Organization for Standardization


Life cycle assessment


Life cycle inventory


Life cycle impact assessment


Proton exchange membrane


Social cost of carbon


Super-critical water cooled reactor


Solid oxide electrolysis cell


Thermochemical cycle


  1. 1.
    Dincer I (2007) Environmental and sustainability aspects of hydrogen and fuel cell systems. Int J Energy Res 31:29–55CrossRefGoogle Scholar
  2. 2.
    Dincer I, Balta MT (2011) Potential thermochemical and hybrid cycles for nuclear-based hydrogen production. Int J Energy Res 35:123–127CrossRefGoogle Scholar
  3. 3.
    Naterer GF, Suppiah S, Stolberg L, Lewis M, Ferrandon M, Wang Z, Dincer I, Gabriel K, Rosen MA, Secnik E, Easton EB, Trevani L, Pioro I, Tremaine P, Lvov S, Jiang J, Rizvi G, Ikeda BM, Lu L, Kaye M, Smith WR, Mostaghimi J, Spekkens P, Fowler M, Avsec J (2011) Clean hydrogen production with the Cu-Cl cycle—progress of international consortium, II: simulations, thermochemical data and materials. Int J Hydrogen Energ 36:15486–15501CrossRefGoogle Scholar
  4. 4.
    Dincer I (2012) Green methods for hydrogen production. Int J Hydrogen Energ 37:1954–1971CrossRefGoogle Scholar
  5. 5.
    Muradov NZ, Veziroglu TN (2005) From hydrocarbon to hydrogen-carbon to hydrogen economy. Int J Hydrogen Energ 30:225–237CrossRefGoogle Scholar
  6. 6.
    Funk JE (2001) Thermochemical hydrogen production: past and present. Int J Hydrogen Energ 26:185–190CrossRefGoogle Scholar
  7. 7.
    Wang ZL, Naterer GF, Gabriel K (2008) Multiphase reactor scale-up for Cu-Cl thermochemical hydrogen production cycle. Int J Hydrogen Energ 33:6934–6946CrossRefGoogle Scholar
  8. 8.
    Rosen MA, Naterer GF, Chukwu CC, Sadhankar R, Suppiah S (2012) Nuclear-based hydrogen production with a thermochemical copper-chlorine cycle and supercritical water reactor: equipment scale-up and process simulation. Int J Energy Res 36:456–465CrossRefGoogle Scholar
  9. 9.
    Ozbilen A, Dincer I, Rosen MA (2011) Environmental evaluation of hydrogen production via thermochemical water splitting using the Cu-Cl cycle: a parametric study. Int J Hydrogen Energ 36:9514–9528CrossRefGoogle Scholar
  10. 10.
    Ozbilen A, Dincer I, Rosen MA (2012) Life cycle assessment of hydrogen production via thermochemical water splitting using multi-step Cu-Cl cycles. J Clean Prod 33:202–216CrossRefGoogle Scholar
  11. 11.
    Lewis MA, Masin JG, O’Hare PA (2009) Evaluation of alternative thermochemical cycles-Part I. The methodology. Int J Hydrogen Energ 34:4115–4124CrossRefGoogle Scholar
  12. 12.
    Orhan MF, Dincer I, Rosen MA (2011) Design of systems for hydrogen production based on the Cu-Cl thermochemical water decomposition cycle: configurations and performance. Int J Hydrogen Energ 36:11309–11320CrossRefGoogle Scholar
  13. 13.
    Balta MT, Dincer I, Hepbasli A (2012) Energy and exergy analyses of magnesium-chlorine (Mg-Cl) thermochemical cycle. Int J Hydrogen Energ 37:4855–4862CrossRefGoogle Scholar
  14. 14.
    Elder R, Allen R (2009) Nuclear heat for hydrogen production: coupling a very high/high temperature reactor to a hydrogen production plant. Prog Nucl Energy 51:500–525CrossRefGoogle Scholar
  15. 15.
    Ball M, Wietschel M (2009) The future of hydrogen—opportunities and challenges. Int J Hydrogen Energ 34:615–627CrossRefGoogle Scholar
  16. 16.
    Urbaniec K, Ahrer W (2010) Conference report: 18th World Hydrogen Energy Conference. J Clean Prod 18:S123–S125CrossRefGoogle Scholar
  17. 17.
    Ozbilen A, Dincer I, Naterer GF, Aydin M (2012) Role of hydrogen storage in renewable energy management for Ontario. Int J Hydrogen Energ 37:7343–7354CrossRefGoogle Scholar
  18. 18.
    Dufour J, Serrano DP, Galvez JL, Moreno J, Garcia C (2009) Life cycle assessment of processes for hydrogen production: environmental feasibility and reduction of greenhouse gases emissions. Int J Hydrogen Energ 34:1370–1376CrossRefGoogle Scholar
  19. 19.
    Boehm R, Chen Y, Earl B, Hsieh S, Moujaes S (2003) H2 Technology Survey. UNLV Program, University of Nevada Las Vegas, Center for Energy Research, November 25. Available from
  20. 20.
    Pilavachi PA, Chatzinapagi AI, Spyropoulou AI (2009) Evaluation of hydrogen production methods using the analytic hierarchy process. Int J Hydrogen Energ 34:5294–5303CrossRefGoogle Scholar
  21. 21.
    Dincer I, Zamfirescu C (2012) Sustainable hydrogen production options and the role of IAHE. Int J Hydrogen Energ. doi: 10.1016/j.ijhydene.2012.02.133
  22. 22.
    Zeng K, Zhang D (2010) Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci 36:307–326CrossRefGoogle Scholar
  23. 23.
    Utgikar V, Thiesen T (2006) Life cycle assessment of high temperature electrolysis for hydrogen production via nuclear energy. Int J Hydrogen Energ 31:939–944CrossRefGoogle Scholar
  24. 24.
    Herring S, Gougar H (2011) High-temperature electrolysis for hydrogen production from nuclear energy, INL, Idaho National Laboratory, Publication: 05-GA50193-19Google Scholar
  25. 25.
    Balta MT, Dincer I, Hepbasli A (2009) Thermodynamic assessment of geothermal energy use in hydrogen production. Int J Hydrogen Energ 34:2925–2939CrossRefGoogle Scholar
  26. 26.
    Curran MA (ed) (2012) Life cycle assessment handbook: a guide for environmentally sustainable products. Wiley, Hoboken, NJGoogle Scholar
  27. 27.
    International Organization for Standardization (ISO) (1997) ISO 14040, Environmental management - life cycle assessment – principles and frameworkGoogle Scholar
  28. 28.
    International Organization for Standardization (ISO) (1998) ISO 14041, Environmental management - life cycle assessment – goal and scope definition and inventory analysisGoogle Scholar
  29. 29.
    International Organization for Standardization (ISO) (2000a) ISO 14042, Environmental management - life cycle assessment – life cycle impact assessmentGoogle Scholar
  30. 30.
    International Organization for Standardization (ISO) (2000b) ISO 14043, Environmental management - life cycle assessment – life cycle interpretationGoogle Scholar
  31. 31.
    International Organization for Standardization (ISO) (2006) ISO 14044, Environmental management - life cycle assessment – requirements and guidelinesGoogle Scholar
  32. 32.
    Curran MA (2000) Life cycle assessment: an international experience. Environ Progress 19:65–71CrossRefGoogle Scholar
  33. 33.
    Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, Koning A de, Oers L van, Wegener Sleeswijk A, Suh S, Udo de Haes HA, Bruijn H de, Duin R van, Huijbregts MAJ (2002) Handbook on life cycle assessment. Operational guide to the ISO standards. I: LCA in perspective. IIa: Guide. IIb: Operational annex. III: Scientific background. Kluwer Academic Publishers, Dordrecht.Google Scholar
  34. 34.
    Goedkoop M, Demmers M, Collignon M (1996) The eco-indicator 95 manual for designers, national reuse of waste research programme, NetherlandsGoogle Scholar
  35. 35.
    Steen B (1999) A systematic approach to environmental priority strategies in product development (EPS). Version 2000 – general system characteristics. CPM report 1999:4, Center for Environmental Assessment, Chalmers University of Technology, Gothenburg, SwedenGoogle Scholar
  36. 36.
    Jolliet O, Margni M, Charles R, Humbert S, Payet J, Rebitzer G, Rosenbaum R (2003) IMPACT 2002+: a new life cycle impact assessment methodology. Int J Life Cycle Assess 8:324–330CrossRefGoogle Scholar
  37. 37.
    Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (2007) Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007. Cambridge University Press, Cambridge, UKGoogle Scholar
  38. 38.
    Spath PL, Mann MK (2001) Life cycle assessment of hydrogen production via natural gas steam reforming. National Renewable Energy Laboratory (NREL), Golden, CO, TP-570-27637Google Scholar
  39. 39.
    Spath PL, Mann MK (2004) Life cycle assessment of hydrogen production via wind/electrolysis. Technical report. NREL, National Renewable Energy Laboratory, Golden, CO, MP-560-3504Google Scholar
  40. 40.
    Marquevich M, Sonnemann GW, Castells F, Montane D (2002) Life cycle inventory analysis of hydrogen production by the steam-reforming process: comparison between vegetable oils and fossil fuels as feedstock. Green Chem 4:414–423CrossRefGoogle Scholar
  41. 41.
    Koroneos C, Dompros A, Roumbas G, Moussipoulos N (2004) Life cycle assessment of hydrogen fuel production processes. Int J Hydrogen Energ 29:1443–1450CrossRefGoogle Scholar
  42. 42.
    Utgikar V, Ward B (2006) Life cycle assessment of ISPRA Mark 9 thermochemical cycle for nuclear hydrogen production. J Chem Technol Biotechnol 81:1753–1759CrossRefGoogle Scholar
  43. 43.
    Solli C, Stromman AH, Herrtwich EG (2006) Fission or fossil: life cycle assessment of hydrogen production. Proc IEEE 94:1785–1794CrossRefGoogle Scholar
  44. 44.
    Koroneos C, Dompros A, Roumbas G (2008) Hydrogen production via biomass gasification: a life cycle assessment approach. Chem Eng Process 47:1267–1274Google Scholar
  45. 45.
    Djomo SN, Humbert S, Blumberga D (2008) Life cycle assessment of hydrogen produced potato steam peels. Int J Hydrogen Energ 33:3067–3072CrossRefGoogle Scholar
  46. 46.
    Lubis LL, Dincer I, Rosen MA (2010) Life cycle assessment of hydrogen production using nuclear energy: an application based on thermochemical water splitting. J Energy Resour Technol 132:210041–210046CrossRefGoogle Scholar
  47. 47.
    Chouai A, Laugier S, Richon D (2002) Modeling of thermodynamic properties using neural networks application to refrigerants. Fluid Phase Equilibr 199:53–62CrossRefGoogle Scholar
  48. 48.
    Kizilkan O (2011) Thermodynamic analysis of variable speed refrigeration system using artificial neural networks. Expert Sys Appl 38:11686–11692CrossRefGoogle Scholar
  49. 49.
    Simpson MF, Herrmann SD, Boyle BD (2006) A hybrid thermochemical electrolytic process for hydrogen production based on the reverse Deacon reaction. Int J Hydrogen Energ 31:1241–1246CrossRefGoogle Scholar
  50. 50.
    Motupally D, Mah DT, Freire FJ, Weidner JW (1998) Recycling chlorine from hydrogen chloride. Electrochem Soc Interf 7:32–36Google Scholar
  51. 51.
    Petri MC, Yildiz B, Klickman AE (2006) US Work on technical and economic aspects of electrolytic, thermochemical, and hybrid processes for hydrogen production at temperatures below 550 °C. Int J Nuclear Hydrog Prod Appl 1:79–91Google Scholar
  52. 52.
    Pioro IL, Duffey RB (2007) Heat transfer and hydraulic resistance at supercritical pressures in power engineering applications. ASME, New YorkCrossRefGoogle Scholar
  53. 53.
    Akdag U, Komur MA, Ozguc AF (2009) Estimation of heat transfer in oscillating annular flow using artificial neural Networks. Adv Eng Softw 40:864–870CrossRefzbMATHGoogle Scholar
  54. 54.
    Hope CW (2006) The social cost of carbon: what does it actually depend on? Clim Policy 6:565–572Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Faculty of Engineering and Applied ScienceUniversity of Ontario Institute of TechnologyOshawaCanada

Personalised recommendations