Skip to main content

Comparative Environmental Impact Assessment of Nuclear-Based Hydrogen Production via Mg–Cl and Cu–Cl Thermochemical Water Splitting Cycles

  • Chapter
  • First Online:
Causes, Impacts and Solutions to Global Warming

Abstract

The environmental impacts of nuclear-based hydrogen production processes are evaluated and compared, considering magnesium–chlorine (Mg–Cl) and copper–chlorine (Cu–Cl) thermochemical water decomposition cycles and using life cycle analysis. Variations of environmental impacts (acidification potential and global warming potential) with hydrogen production plant lifetime are reported. An artificial neural network model is used to develop the results. Relations between environmental impacts and economic factors are also presented using the social cost of carbon concept. The results show that the Cu–Cl thermochemical cycle has lower acidification and global warming potentials per unit mass of hydrogen produced compared to the Mg–Cl thermochemical cycle due to its lower electrical work requirement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

W n :

Weights of ANN

x n :

Inputs of ANN

y n :

Outputs of ANN

α:

Activation function

Σ:

Summation function

ANN:

Artificial neural network

AP:

Acidification potential

AECL:

Atomic Energy of Canada Limited

CML:

The Center of Environmental Science of Leiden University

DC:

Direct current

GHG:

Greenhouse gas

GWP:

Global warming potential

HTE:

High temperature electrolysis

ISO:

International Organization for Standardization

LCA:

Life cycle assessment

LCI:

Life cycle inventory

LCIA:

Life cycle impact assessment

PEM:

Proton exchange membrane

SCC:

Social cost of carbon

SCWR:

Super-critical water cooled reactor

SOEP:

Solid oxide electrolysis cell

TC:

Thermochemical cycle

References

  1. Dincer I (2007) Environmental and sustainability aspects of hydrogen and fuel cell systems. Int J Energy Res 31:29–55

    Article  Google Scholar 

  2. Dincer I, Balta MT (2011) Potential thermochemical and hybrid cycles for nuclear-based hydrogen production. Int J Energy Res 35:123–127

    Article  Google Scholar 

  3. Naterer GF, Suppiah S, Stolberg L, Lewis M, Ferrandon M, Wang Z, Dincer I, Gabriel K, Rosen MA, Secnik E, Easton EB, Trevani L, Pioro I, Tremaine P, Lvov S, Jiang J, Rizvi G, Ikeda BM, Lu L, Kaye M, Smith WR, Mostaghimi J, Spekkens P, Fowler M, Avsec J (2011) Clean hydrogen production with the Cu-Cl cycle—progress of international consortium, II: simulations, thermochemical data and materials. Int J Hydrogen Energ 36:15486–15501

    Article  Google Scholar 

  4. Dincer I (2012) Green methods for hydrogen production. Int J Hydrogen Energ 37:1954–1971

    Article  Google Scholar 

  5. Muradov NZ, Veziroglu TN (2005) From hydrocarbon to hydrogen-carbon to hydrogen economy. Int J Hydrogen Energ 30:225–237

    Article  Google Scholar 

  6. Funk JE (2001) Thermochemical hydrogen production: past and present. Int J Hydrogen Energ 26:185–190

    Article  Google Scholar 

  7. Wang ZL, Naterer GF, Gabriel K (2008) Multiphase reactor scale-up for Cu-Cl thermochemical hydrogen production cycle. Int J Hydrogen Energ 33:6934–6946

    Article  Google Scholar 

  8. Rosen MA, Naterer GF, Chukwu CC, Sadhankar R, Suppiah S (2012) Nuclear-based hydrogen production with a thermochemical copper-chlorine cycle and supercritical water reactor: equipment scale-up and process simulation. Int J Energy Res 36:456–465

    Article  Google Scholar 

  9. Ozbilen A, Dincer I, Rosen MA (2011) Environmental evaluation of hydrogen production via thermochemical water splitting using the Cu-Cl cycle: a parametric study. Int J Hydrogen Energ 36:9514–9528

    Article  Google Scholar 

  10. Ozbilen A, Dincer I, Rosen MA (2012) Life cycle assessment of hydrogen production via thermochemical water splitting using multi-step Cu-Cl cycles. J Clean Prod 33:202–216

    Article  Google Scholar 

  11. Lewis MA, Masin JG, O’Hare PA (2009) Evaluation of alternative thermochemical cycles-Part I. The methodology. Int J Hydrogen Energ 34:4115–4124

    Article  Google Scholar 

  12. Orhan MF, Dincer I, Rosen MA (2011) Design of systems for hydrogen production based on the Cu-Cl thermochemical water decomposition cycle: configurations and performance. Int J Hydrogen Energ 36:11309–11320

    Article  Google Scholar 

  13. Balta MT, Dincer I, Hepbasli A (2012) Energy and exergy analyses of magnesium-chlorine (Mg-Cl) thermochemical cycle. Int J Hydrogen Energ 37:4855–4862

    Article  Google Scholar 

  14. Elder R, Allen R (2009) Nuclear heat for hydrogen production: coupling a very high/high temperature reactor to a hydrogen production plant. Prog Nucl Energy 51:500–525

    Article  Google Scholar 

  15. Ball M, Wietschel M (2009) The future of hydrogen—opportunities and challenges. Int J Hydrogen Energ 34:615–627

    Article  Google Scholar 

  16. Urbaniec K, Ahrer W (2010) Conference report: 18th World Hydrogen Energy Conference. J Clean Prod 18:S123–S125

    Article  Google Scholar 

  17. Ozbilen A, Dincer I, Naterer GF, Aydin M (2012) Role of hydrogen storage in renewable energy management for Ontario. Int J Hydrogen Energ 37:7343–7354

    Article  Google Scholar 

  18. Dufour J, Serrano DP, Galvez JL, Moreno J, Garcia C (2009) Life cycle assessment of processes for hydrogen production: environmental feasibility and reduction of greenhouse gases emissions. Int J Hydrogen Energ 34:1370–1376

    Article  Google Scholar 

  19. Boehm R, Chen Y, Earl B, Hsieh S, Moujaes S (2003) H2 Technology Survey. UNLV Program, University of Nevada Las Vegas, Center for Energy Research, November 25. Available from www.unlv.edu

  20. Pilavachi PA, Chatzinapagi AI, Spyropoulou AI (2009) Evaluation of hydrogen production methods using the analytic hierarchy process. Int J Hydrogen Energ 34:5294–5303

    Article  Google Scholar 

  21. Dincer I, Zamfirescu C (2012) Sustainable hydrogen production options and the role of IAHE. Int J Hydrogen Energ. doi:http://dx.doi.org/10.1016/j.ijhydene.2012.02.133

  22. Zeng K, Zhang D (2010) Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci 36:307–326

    Article  Google Scholar 

  23. Utgikar V, Thiesen T (2006) Life cycle assessment of high temperature electrolysis for hydrogen production via nuclear energy. Int J Hydrogen Energ 31:939–944

    Article  Google Scholar 

  24. Herring S, Gougar H (2011) High-temperature electrolysis for hydrogen production from nuclear energy, INL, Idaho National Laboratory, Publication: 05-GA50193-19

    Google Scholar 

  25. Balta MT, Dincer I, Hepbasli A (2009) Thermodynamic assessment of geothermal energy use in hydrogen production. Int J Hydrogen Energ 34:2925–2939

    Article  Google Scholar 

  26. Curran MA (ed) (2012) Life cycle assessment handbook: a guide for environmentally sustainable products. Wiley, Hoboken, NJ

    Google Scholar 

  27. International Organization for Standardization (ISO) (1997) ISO 14040, Environmental management - life cycle assessment – principles and framework

    Google Scholar 

  28. International Organization for Standardization (ISO) (1998) ISO 14041, Environmental management - life cycle assessment – goal and scope definition and inventory analysis

    Google Scholar 

  29. International Organization for Standardization (ISO) (2000a) ISO 14042, Environmental management - life cycle assessment – life cycle impact assessment

    Google Scholar 

  30. International Organization for Standardization (ISO) (2000b) ISO 14043, Environmental management - life cycle assessment – life cycle interpretation

    Google Scholar 

  31. International Organization for Standardization (ISO) (2006) ISO 14044, Environmental management - life cycle assessment – requirements and guidelines

    Google Scholar 

  32. Curran MA (2000) Life cycle assessment: an international experience. Environ Progress 19:65–71

    Article  Google Scholar 

  33. Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, Koning A de, Oers L van, Wegener Sleeswijk A, Suh S, Udo de Haes HA, Bruijn H de, Duin R van, Huijbregts MAJ (2002) Handbook on life cycle assessment. Operational guide to the ISO standards. I: LCA in perspective. IIa: Guide. IIb: Operational annex. III: Scientific background. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  34. Goedkoop M, Demmers M, Collignon M (1996) The eco-indicator 95 manual for designers, national reuse of waste research programme, Netherlands

    Google Scholar 

  35. Steen B (1999) A systematic approach to environmental priority strategies in product development (EPS). Version 2000 – general system characteristics. CPM report 1999:4, Center for Environmental Assessment, Chalmers University of Technology, Gothenburg, Sweden

    Google Scholar 

  36. Jolliet O, Margni M, Charles R, Humbert S, Payet J, Rebitzer G, Rosenbaum R (2003) IMPACT 2002+: a new life cycle impact assessment methodology. Int J Life Cycle Assess 8:324–330

    Article  Google Scholar 

  37. Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (2007) Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007. Cambridge University Press, Cambridge, UK

    Google Scholar 

  38. Spath PL, Mann MK (2001) Life cycle assessment of hydrogen production via natural gas steam reforming. National Renewable Energy Laboratory (NREL), Golden, CO, TP-570-27637

    Google Scholar 

  39. Spath PL, Mann MK (2004) Life cycle assessment of hydrogen production via wind/electrolysis. Technical report. NREL, National Renewable Energy Laboratory, Golden, CO, MP-560-3504

    Google Scholar 

  40. Marquevich M, Sonnemann GW, Castells F, Montane D (2002) Life cycle inventory analysis of hydrogen production by the steam-reforming process: comparison between vegetable oils and fossil fuels as feedstock. Green Chem 4:414–423

    Article  Google Scholar 

  41. Koroneos C, Dompros A, Roumbas G, Moussipoulos N (2004) Life cycle assessment of hydrogen fuel production processes. Int J Hydrogen Energ 29:1443–1450

    Article  Google Scholar 

  42. Utgikar V, Ward B (2006) Life cycle assessment of ISPRA Mark 9 thermochemical cycle for nuclear hydrogen production. J Chem Technol Biotechnol 81:1753–1759

    Article  Google Scholar 

  43. Solli C, Stromman AH, Herrtwich EG (2006) Fission or fossil: life cycle assessment of hydrogen production. Proc IEEE 94:1785–1794

    Article  Google Scholar 

  44. Koroneos C, Dompros A, Roumbas G (2008) Hydrogen production via biomass gasification: a life cycle assessment approach. Chem Eng Process 47:1267–1274

    Google Scholar 

  45. Djomo SN, Humbert S, Blumberga D (2008) Life cycle assessment of hydrogen produced potato steam peels. Int J Hydrogen Energ 33:3067–3072

    Article  Google Scholar 

  46. Lubis LL, Dincer I, Rosen MA (2010) Life cycle assessment of hydrogen production using nuclear energy: an application based on thermochemical water splitting. J Energy Resour Technol 132:210041–210046

    Article  Google Scholar 

  47. Chouai A, Laugier S, Richon D (2002) Modeling of thermodynamic properties using neural networks application to refrigerants. Fluid Phase Equilibr 199:53–62

    Article  Google Scholar 

  48. Kizilkan O (2011) Thermodynamic analysis of variable speed refrigeration system using artificial neural networks. Expert Sys Appl 38:11686–11692

    Article  Google Scholar 

  49. Simpson MF, Herrmann SD, Boyle BD (2006) A hybrid thermochemical electrolytic process for hydrogen production based on the reverse Deacon reaction. Int J Hydrogen Energ 31:1241–1246

    Article  Google Scholar 

  50. Motupally D, Mah DT, Freire FJ, Weidner JW (1998) Recycling chlorine from hydrogen chloride. Electrochem Soc Interf 7:32–36

    Google Scholar 

  51. Petri MC, Yildiz B, Klickman AE (2006) US Work on technical and economic aspects of electrolytic, thermochemical, and hybrid processes for hydrogen production at temperatures below 550 °C. Int J Nuclear Hydrog Prod Appl 1:79–91

    Google Scholar 

  52. Pioro IL, Duffey RB (2007) Heat transfer and hydraulic resistance at supercritical pressures in power engineering applications. ASME, New York

    Book  Google Scholar 

  53. Akdag U, Komur MA, Ozguc AF (2009) Estimation of heat transfer in oscillating annular flow using artificial neural Networks. Adv Eng Softw 40:864–870

    Article  MATH  Google Scholar 

  54. Hope CW (2006) The social cost of carbon: what does it actually depend on? Clim Policy 6:565–572

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Ozbilen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ozbilen, A., Dincer, I., Rosen, M.A. (2013). Comparative Environmental Impact Assessment of Nuclear-Based Hydrogen Production via Mg–Cl and Cu–Cl Thermochemical Water Splitting Cycles. In: Dincer, I., Colpan, C., Kadioglu, F. (eds) Causes, Impacts and Solutions to Global Warming. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7588-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7588-0_26

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7587-3

  • Online ISBN: 978-1-4614-7588-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics