Intracellular Ions and Hypertension in Blacks

  • Richard S. Cooper
  • James L. Borke
Part of the Clinical Physiology Series book series (CLINPHY)


In large part because of increased risk of hypertension observed among blacks compared with whites, considerable attention has been focused on possible racial differences in ion metabolism. There are at least two reasons that these differences might be important. First, etiologic research in most disciplines relies heavily on the investigation of high-risk subgroups. If we knew why the risk of hypertension among blacks is twice that found among whites we would know a great deal more about what causes this disease than we do today. Second, cardiovascular diseases continue to be the primary cause of higher death rates experienced by black adult Americans. Approximately half of the higher mortality among blacks compared with whites can be accounted for by the complications of high blood pressure (77). We urgently need effective strategies for primary prevention of this disease; to achieve that goal a better understanding of the etiologic process is required. Whether the excess risk of hypertension among U.S. blacks is conferred by their genetic heritage or exposure to high levels of environmental risk factors remains undetermined Observed phenotypic alternations in ion metabolism could result from either genetic predisposition or exposures to external causes. A distinction between a finding that reflects special or unique characteristics of the black population, or a universal human trait that is simply exaggerated in this group, is crucial when the data collected on ion metabolism are being used to construct a theory of the pathophysiology of hypertension. Is the pathophysiology of hypertension essentially the same in blacks and whites, or can we expect to find consistent differences at a basic level? There is evidence, for example, that among the various hypertensive strains of rats, different alterations in ion transport systems exist (28,35). Are there comparable differences among “strains” of humans? Before reviewing the primary reports in this field we will attempt to address the implications of these questions.


Essential Hypertension Erythrocyte Sodium Cell Sodium Sodium Pump Activity Hypertensive Black 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aderounmu, A. F., and L. A. Salako. Abnormal cation composition and transport in erythrocytes from hypertensive patients. Eur. J. Clin. Invest. 9: 369–375, 1979.PubMedGoogle Scholar
  2. 2.
    Adragna, N., M. Canessa, H. Solomon, E. Slater, and D. C. Tosteson. Red cell lithium-sodium countertransport and sodium-potassium cotransport in patients with essential hypertension. Hypertension 4: 795–804, 1982.PubMedGoogle Scholar
  3. 3.
    Ahmad, M. N., and A. R. Leeds. More on sodium-potassium-ATPase and obesity. N. Engl. J. Med. 310: 1390–1391, 1984.Google Scholar
  4. 4.
    Akinkugbe, O. O., and O. A. Ojo. Arterial pressures in rural and urban populations in Nigeria. Br. Med. J. 2: 222–224, 1969.PubMedGoogle Scholar
  5. 5.
    Allen, A., J. Stamler, R. Stamler, F. Gosch, R. Cooper, M. Trevisan, and V. Persky. Observational and interventional experiences on dietary sodium intake and blood pressure. In: The Role of Salt in Cardiovascular Hypertension, edited by M. R. Kare and M. J. Fregly. Academic Press, New York, 1981, pp. 63–68.Google Scholar
  6. 6.
    Aviv, A. The link between cytosolic Ca“ and the Na + -H+ antiport: a unifying factor for essential hypertension. J. Hypertens. 6: 685–691, 1988.PubMedGoogle Scholar
  7. 7.
    Aviv, A., and A. Livne. The Na/H antiport, cytosolic free Ca, and essential hypertension: a hypothesis. Am. J. Hypertens. 1: 410–413, 1988.PubMedGoogle Scholar
  8. 8.
    Barley, J., J. K. Cruickshank, N. D. Carter, S. Jefery, A. Smith, A. Charlett, and D. J. Webb. Renin and ANP RFLPs, plasma renin and blood pressure in black and white population samples. In preparation.Google Scholar
  9. 9.
    Beutler, E., W. Kuhl, and P. Sachs. Sodium-potassium ATPase activity is influenced by ethnic origin and not by obesity. N. Engl. J. Med. 309: 756–760, 1983.PubMedGoogle Scholar
  10. 10.
    Blaustein, M. P. Sodium transport and hypertension: where are we going? Hypertension 6: 445–453, 1984.PubMedGoogle Scholar
  11. 11.
    Borke, J., J. T. Penniston, and R. Kuman. Recent advances in calcium transport by the kidney. Semin. Nephrol. 10: 15–23, 1990.PubMedGoogle Scholar
  12. 12.
    Canessa, M., N. Adragna, H. S. Solomon, T. M. Connolly, and D. C. Tosteson. Increased sodium-lithium countertransport in red cells of patients with essential hypertension. N. Engl. J. Med. 302: 772–776, 1980.PubMedGoogle Scholar
  13. 13.
    Canessa, M., A. Spalvins, N. Adragna, an B. Falkner. Red cell sodium countertransport and cotransport in normotensive and hypertensive blacks. Hypertension 6: 344–351, 1984.PubMedGoogle Scholar
  14. 14.
    Chakraborty, R., R. E. Ferrell, M. P. Stern, S. M. Haffner, H. P. Hazuda, and M. Rosenthal. Relationship of prevalence of non-insulin-dependent diabetes mellitus to Amerindian admixture in the Mexican Americans of San Antonio, Texas. Genet. Epidemiol. 3: 435–454, 1986.PubMedGoogle Scholar
  15. 15.
    Cooper, R., and R. David. The biological concept of race and its application in epidemiology and public health. J. Health Polit. Policy Law 11: 97–116, 1986.PubMedGoogle Scholar
  16. 16.
    Cooper, R., and N. Shamsi. Ionized serum calcium in black hypertensives. J. Clin. Hyper-tens. 3: 514–519, 1987.Google Scholar
  17. 17.
    Cooper, R., O. Aina, L. Chaco, A. Achilihu, and H. Feinberg. Cell cations and blood pressure in U.S. whites, U.S. blacks and West African blacks. J. Hum. Hypertens. 4: 477484, 1990.Google Scholar
  18. 18.
    Cooper, R., O. Aina, L. Chaco, A. Achilihu, N. Shamsi, and E. Ford. Red cell sodium and potassium in hypertension among blacks. J. Natl. Med. Assoc. 81: 365–370, 1989.PubMedGoogle Scholar
  19. 19.
    Cooper, R., D. LeGrady, S. Nanas, M. Trevisan, M. Mansour, P. Histand, D. Ostrow, and J. Stamler. Increased sodium-lithium countertransport in college students with elevated blood pressure. J.A.M.A. 249: 1030–1034, 1983.PubMedGoogle Scholar
  20. 20.
    Cooper, R., J. Lipowski, E. Ford, N. Shamsi, H. Feinberg, and G. Le Breton. Increased membrane-bound calcium in platelets of hypertensive patients. Hypertension 13: 139–144, 1989.PubMedGoogle Scholar
  21. 21.
    Cooper, R., K. Miller, M. Trevisan, C. Sempos, E. Larbi, H. Ueshima, D. Ostrow, J. Stamler, A. Spalvins, and M. Canessa. Family history of hypertension and red cell cation transport in high school students. J. Hypertens. 1: 145–152, 1983.PubMedGoogle Scholar
  22. 22.
    Cooper, R., N. Shamsi, and S. Katz. Increased intracellular calcium and sodium in hyper- tensive patients compared to normotensives. Hypertension 9: 224–229, 1987.PubMedGoogle Scholar
  23. 23.
    Cooper, R., M. Trevisan, D. Ostrow, C. Sempos, and J. Stamler. Blood pressure and sodium-lithium countertransport: findings in population-based surveys. J. Hypertens. 2: 467–471, 1984.PubMedGoogle Scholar
  24. 24.
    Cooper, R., L. Van Horn, K. Liu, M. Trevisan, S. Nanas, and J. Stamler. The effect of dietary sodium reduction on red blood cell sodium concentration and sodium-lithium countertransport. Hypertension 6: 731–735, 1984.PubMedGoogle Scholar
  25. 25.
    Cruickshank, J. K., and D. G. Beevers, eds. Ethnic Factors in Health and Disease. Butterworth and Co., London, 1989.Google Scholar
  26. 26.
    Davidson, J. S., L. H. Opie, and B. Keding. Sodium-potassium cotransport activity as a genetic marker in essential hypertension. Br. Med. J. 224: 539–541, 1982.Google Scholar
  27. 27.
    De la Sierra, A., P. Hannaert, J-P. 011ivier, N. Senn, and R. Garay. Kinetic study of the Cat“ pump in erythrocytes from essential hypertensive patients. J. Hypertens. 8: 285–293, 1990.PubMedGoogle Scholar
  28. 28.
    DeMendonca, M., A. Knorr, M. L. Grichois, D. Ben-Ishay, R. P. Garay, and P. Member. Erythrocytic ion transport systems in primary and secondary hypertension of the rat. Kidney Int. 21 (Suppl 11): S69 - S75, 1982.Google Scholar
  29. 29.
    deWardner, H. E., and G. A. MacGregor. Dahl’s hypothesis that a saluretic substance may be responsible for a sustained rise in arterial pressure: its possible role in essential hypertension. Kidney Int. 18: 1–18, 1980.Google Scholar
  30. 30.
    Dudlye, C., L. Giuffra, P. Tippett, A. E. G. Raine, and S. T. Reeders. Genetic linkage analysis of a Na-H antiporter in essential hypertension. Program and Abstracts, American Society of Nephrology, 1989, 196A.Google Scholar
  31. 31.
    Elliot, P., ed. The Intersalt Cooperative Group. The Intersalt Study. J. Hum. Hypertens. 3: 331–407, 1989.Google Scholar
  32. 32.
    Erne, P., P. Bolli, E. Burgisser, and F. R. Buhler. Correlation of platelet calcium with blood pressure. N. Engl. J. Med. 310: 1084–1088, 1984.PubMedGoogle Scholar
  33. 33.
    Etkin, N. L., J. R. Mahoney, M. W. Forsthoefel, J. R. Eckman, J. D. McSwigan, R. F. Gillum, and J. W. Eaton. Racial differences in hypertension-associated red cell sodium permeability. Nature 297: 588–589, 1982.PubMedGoogle Scholar
  34. 34.
    Forrester, T. E., and G. A. O. Alleyne. Sodium, potassium and rate constants for sodium efflux in leukocytes from hypertensive Jamaicans. Br. Med. J. 283: 5–7, 1981.Google Scholar
  35. 35.
    Friedman, S. M., M. Nakashima, R. A. Mclndoe, and C. L. Friedman. Increased erythrocyte permeability to Li and Na in the spontaneously hypertensive rat. Experientia 32: 476–478, 1976.PubMedGoogle Scholar
  36. 36.
    Funder, J., J. O. Wieth, H. E. Jensen, and K. K. Ibsen. The sodium/lithium exchange mechanism in essential hypertension: is it a sodium/proton exchanger? In: Topics in Pathophysiology of Hypertension, edited by H. Villarreal and M. P. Sambhi. Martinus Nijhoff, The Hague, 1984, pp. 147–161.Google Scholar
  37. 37.
    Garay, R. P., and C. Nazaret. Na leak in erythrocytes from essential hypertensive patients. Clin. Sci. 69: 613–624, 1985.PubMedGoogle Scholar
  38. 38.
    Garay, R., N. Adragna, M. Canessa, and D. Tosteson. Outward sodium potassium cotransport in human red cells. J. Membr. Biol. 62: 169–174, 1981.PubMedGoogle Scholar
  39. 39.
    Garay, R. P., G. Dagher, M. Pernollet, M. Devynck, and P. Meyer. Inherited defect in a Na-K cotransport system in erythrocytes from essential hypertensive patients. Nature 284: 281–283, 1980.PubMedGoogle Scholar
  40. 40.
    Garay, R. P., P. Hyannaert, G. Dagher, C. Nazaret, Y. Maridonneau, and P. Meyer. Abnormal erythrocyte Na-K cotransport system: a proposed genetic marker of essential hypertension. Clin. Exp. Hypertens. 3: 861–870, 1981.PubMedGoogle Scholar
  41. 41.
    Garay, R. P., C. Nazaret, G. Dagher, E. Bertrand, and P. Meyer. A genetic approach to the geography of hypertension: examination of the Na-K cotransport in Ivory Coast Africans. Clin. Exp. Hypertens. 3: 861–870, 1981.PubMedGoogle Scholar
  42. 42.
    Glass, B., and C. Li. The dynamics of racial intermixture: an analysis based on the American Negro. Am. J. Hum. Genet. 5: 1–20, 1953.PubMedGoogle Scholar
  43. 43.
    Gomez-Marin, O., R. J. Prineas, R. F. Gillum, N. L. Etkin, and J. W. Eaton. Red blood cell sodium permeability and blood pressure: the Minneapolis children’s blood pressure study. The CVD Newsletter, AHA, Dallas, April 1985.Google Scholar
  44. 44.
    Gretler, D. D., K. C. Jones, and M. B. Murphy. Blood platelet sodium hydrogen exchange in black vs. white normotensive subjects. Am. J. Hypertens. 3 (No. 5, Part 2): 54A, 1990.Google Scholar
  45. 45.
    Grim, C., and P. Wilson. The slavery hypothesis of hypertension among blacks. In: Pathophysiology of Hypertension in Blacks, edited by J. C. S. Fray and J. Douglas. Oxford University Press, New York, 1992.Google Scholar
  46. 46.
    Grinstein, S., and A. Rothstein. Mechanisms of regulation of the Na’/H+ exchanger. J. Membr. Biol. 90: 1-12, 1986.Google Scholar
  47. 47.
    Hatori, N., J. P. Gardner, H. Tomonari, B. P. Fine, and A. Aviv. Na+-H+ antiport activity in skin fibroblasts from blacks and whites. Hypertension 15: 140–145, 1990.PubMedGoogle Scholar
  48. 48.
    Hennessy, J. F., and K. P. Ober. Racial differences in intact erythrocyte ion transport. Ann. Clin. Lab. Sci. 12: 35–41, 1982.PubMedGoogle Scholar
  49. 49.
    Hilton, M. D. Cellular sodium transport in essential hypertension. N. Engl. J. Med. 314: 222–228, 1986.PubMedGoogle Scholar
  50. 50.
    Hopp, L., N. Lasker, S. Grossman, R. Bamforth, and A. Aviv. [3Hlouabain binding of red blood cells in whites and blacks. Hypertension 8: 1050–1057, 1986.PubMedGoogle Scholar
  51. 51.
    Hunt, S. C., R. R. Williams, J. B. Smith, and K. O. Ash. Associations of three erythrocyte cation transport systems with plasma lipids in Utah subjects. Hypertension 8: 30–36, 1986.PubMedGoogle Scholar
  52. 52.
    Hutchinson, J., and M. H. Crawford. Genetic determinants of blood pressure level among the black caribs of St. Vincent. Hum. Biol. 53: 453–466, 1981.PubMedGoogle Scholar
  53. 53.
    Hvarfner, A., R. Larsson, C. Morlin, J. Rastad, L. Wide, G. Akerstrom, and Ljunghall. Cytosolic free calcium in platelets: relationships to blood pressure and indices of systemic calcium metabolism. J. Hypertens. 6: 71–77, 1988.PubMedGoogle Scholar
  54. 54.
    Hypertension Detection and Follow-up Program Cooperative Group. Race, education and prevalence of hypertension. Am. J. Epidemiol. 107: 351–361, 1977.Google Scholar
  55. 55.
    Iwao, H., K. Fukui, S. Kim, K. Nakayama, H. Ohkubo, S. Hakanishi, and Abe. Effect of changes in sodium balance on renin, angiotensinogen and atrial natriuretic factor messenger RNA levels in rats. J. Hypertens. 6 (Suppl 4): S297–299, 1988.Google Scholar
  56. 56.
    Kuriyama, S., L. Hopp, H. Tamura, N. Lasker, and A. Aviv. A higher cellular sodium turnover rate in cultured skin fibroblasts from blacks. Hypertension 11: 301–307, 1988.PubMedGoogle Scholar
  57. 57.
    Lasker, J., L. Hopp, S. Grossman, R. Bamforth, and A. Aviv. Race and sex differences in erythrocyte Na’, K+ adenosine triphosphatase. J. Clin. Invest. 75: 1813–1820, 1985.PubMedGoogle Scholar
  58. 58.
    Laurenzi, M., and M. Trevisan. Sodium-lithium countertransport and blood pressure: the Gubbio Population Study. Hypertension 13: 408–415, 1989.PubMedGoogle Scholar
  59. 59.
    Leakey, R. Review of the evidence for our African origins. Ethnicity and Disease, 1: 8–20, 1991.PubMedGoogle Scholar
  60. 60.
    Lewin, R. Africa: cradle of modern humans. Science 237: 1292–1295, 1987.PubMedGoogle Scholar
  61. 61.
    Lewitter, F. Red cell sodium transport studies in adult twins. Am. J. Hum. Genet. 36 (Suppl): 172s, 1984.Google Scholar
  62. 62.
    Lijnen, P., J. R. M’Buyamba-Kabangu, R. Fagard, J. Staessen, and A. Amery. More on sodium-potassium ATPase and obesity. N. Engl. J. Med. 310: 1390, 1984.Google Scholar
  63. 63.
    Livne, A., R. Veitch, S. Grinstein, J. W. Balfe, A. Marquez-Julio, and A. Rothstein. Increased platelet Na`-H+ exchange rates in essential hypertension. Application of a novel test. Lancet 1: 533–536, 1987.PubMedGoogle Scholar
  64. 64.
    Losse, H., W. Zidek, H. Zumkley, F. Wessels, and H. Vetter. Intracellular Na+ as a genetic marker of essential hypertension. Clin. Exp. Hypertens. 3 (4): 627–640, 1981.PubMedGoogle Scholar
  65. 65.
    Love, W. D., and G. E. Burch. Plasma and erythrocyte Na+ and K“ concentrations in a group of southern white and negro blood donors. J. Lab. Clin. Med. 53: 258–267, 1953.Google Scholar
  66. 66.
    Machin, D., and M. J. Campbell. Statistical Table for the Design of Clinical Trials. Blackwell Scientific Publication, Boston, 1987, pp. 89–92.Google Scholar
  67. 67.
    Maclean, C. J., M. S. Adams, W. C. Leysohn, P. L. Workman, R. E. Reed, H. Gershowitz, and L. R. Weitkamp. Genetic studies on hybrid populations. III. Blood pressure in an American black community. Am. J. Hum. Genet. 26: 614–626, 1974.Google Scholar
  68. 68.
    Mahnensmith, R. L., and P. S. Aronson. The plasma membrane sodium hydrogen exchanger and its role in physiological and pathophysiological processes. Circ. Res. 57: 773788, 1985.Google Scholar
  69. 69.
    Matsumoto, K., I. Matsura, T. Oshima, H. Fujii, K. Kido, and G. Kajiyama. The significance of erythrocyte sodium contents on blood pressure: evaluation by multivariate analysis (abstract). Circulation 74(SupplII4):II488, 1986.Google Scholar
  70. 70.
    McDonald, A., K. Liu, J. Stamler, and D. Battle. Race-sex comparisons of Na-Li counter-transport in CARDIA (abstract). Circulation 80 (Suppl II): 11–301, 1989.Google Scholar
  71. 71.
    McVeigh, G. E., S. Copeland, J. McKellar, and D. Johnston. Effect of low versus conventional dose cyclopenthiazide on platelet intracellular calcium in mild essential hypertension. J. Hypertens. 6: 337–341, 1988.PubMedGoogle Scholar
  72. 72.
    Miller, J. M., and J. M. Miller. Duffy antigens and hypertension in a black population. Am. J. Public Health 75: 558–559, 1985.PubMedGoogle Scholar
  73. 73.
    Montagu, A., ed. The Concept of Race. Collier Macmillan, Canada, Toronto, 1964.Google Scholar
  74. 74.
    Motulsky, A. G., W. Burke, P. R. Billings, and R. H. Ward. Hypertension and the genetics of red cell membrane abnormalities. In: Molecular Approaches to Human Polygenic Disease, edited by G. Bock and G. Collings. Wiley, Ciba Symposium 130, Chichester, 150–166, 1987.Google Scholar
  75. 75.
    Munro-Faure, A. D., D. M. Hill, and J. Anderson. Ethnic differences in human blood cell sodium concentration. Nature 231: 457–458, 1971.PubMedGoogle Scholar
  76. 76.
    Nei, L. Genetic distance between populations. Am. Naturalist 105: 385–398, 1972.Google Scholar
  77. 77.
    Otten, M. W., S. M. Teutsch, D. F. Williamson, and J. S. Marks. The effect of known risk factors on the excess mortality of black adults in the United States. J.A.M.A. 263: 845–850, 1990.PubMedGoogle Scholar
  78. 78.
    Patel, R., and J. Johnson. Histocompatibility antigens in black patients with essential hypertension. Circulation 64: 1042–1044, 1981.PubMedGoogle Scholar
  79. 79.
    Postnov, Y. V., and S. N. Orlov. Cell membrane alteration as a source of primary hypertension. J. Hypertens. 2: 1–6, 1984.PubMedGoogle Scholar
  80. 80.
    Postnov, Y. V., S. H. Orlov, M. B. Rfeznikova, G. G. Rjazhsky, and N. I. Pokudin. Calmodulin distribution and Ca transport in the erythrocytes of patients with essential hypertension. Clin. Sci. 66: 459–463, 1984.PubMedGoogle Scholar
  81. 81.
    Poulter, N., K. T. Khaw, B. E. C. Hopwood, M. Mugambi, W. S. Peart, G. Rose, and P. S. Sever. Blood pressure and associated variables in a rural Kenyan community. Hypertension 6: 810–813, 1984.PubMedGoogle Scholar
  82. 82.
    Pritchard, K., A. E. G. Raine, C. C. Ashley, L. M. Castell, V. Somers, C. Osborn, J. G. G. Ledingham, and J. Conway. Correlation of blood pressure in normotensive and hypertensive individuals with platelet but not lymphocyte intracellular free calcium concentrations. Clin. Sci. 76: 631–635, 1989.PubMedGoogle Scholar
  83. 83.
    Resnick, L. M., R. K. Gupta, B. Di Fabio, R. M. Marion, and J. H. Laragh. Role of intracellular cations in dietary salt sensitivity. 13th Scientific Meeting of the International Society of Hypertension, Abstracts, Montreal, June, 1990, S53.Google Scholar
  84. 84.
    Resnick, L. M., R. K. Gupta, J. H. Laragh. Intracellular sodium in hypertension: relation to salt sensitivity and plasma renin activity. Am. J. Hypertens. 3 (No. 5, Part 2): 52A, 1990.Google Scholar
  85. 85.
    Ringel, R. E., J. M. Hamlyn, J. Schaeffer, B. P. Hamilton, A. A. Kowarski, M. P. Blaustein, and M. A. Berman. Red cell cotransport activity and sodium content in black men. Hypertension 6: 724–730, 1984.PubMedGoogle Scholar
  86. 86.
    Rounquist, G., and G. Frithz. Decreased 45calcium uptake in red cells of patients with essential hypertension. Acta Med. Scand. 224: 445–449, 1988.Google Scholar
  87. 87.
    Rygielski, D., A. Reddi, S. Kuriyama, N. Lasker, and A. Aviv. Erythrocyte ghost Na-, K-ATPase and blood pressure. Hypertension 10: 259–266, 1987.PubMedGoogle Scholar
  88. 88.
    Sardet, C., A. Franchi, and J. Pouyssegur. Molecular cloning, primary structure, and expression of the human growth factor-activatable Na +/H+ antiporter. Cell 56: 37 1280, 1989.Google Scholar
  89. 89.
    Schmouder, R. L., and A. B. Weder. Platelet sodium-proton exchange in increased in essential hypertension. J. Hypertens. 7: 325–330, 1989.PubMedGoogle Scholar
  90. 90.
    Seifter, J. L., and P. S. Aronson. Properties and physiologic roles of plasma membrane sodium-hydrogen exchange. J. Clin. Invest. 78: 859–864, 1986.PubMedGoogle Scholar
  91. 91.
    Semplicini, A., M. Canessa, M. G. Mozzato, G. Ceolotto, A. C. Marzola Pessina, D. Dal Palu. Red blood cell Na/H and Li/Na exchange in subjects with essential hypertension (abstract). Am. J. Hypertens. 1 (No. 3, Part 2): 61A, 1988.Google Scholar
  92. 92.
    Sempos, C., R. Cooper, M. Trevisan, and J. Stamler. Red cell sodium-lithium counter-transport and family history of hypertension. Clin. Exp. Hypertens. A6: 1379–1393, 1984.Google Scholar
  93. 93.
    Sharma, C., E. R. Dalferes, D. S. Freedman, A. Asamoah, and G. S. Berension. Use of 86Rb and 22Na in assaying active and cotransport activities human erythrocytes in a biracial population. Clin. Chim. Acta 176: 133–142, 1988.PubMedGoogle Scholar
  94. 94.
    Siffert, W., D. Rosskopf, and U. Osswald. Overexpression of platelet Na+/H+ exchange activity in essential hypertension (abstract). Am. J. Hypertens. 3: 58A, 1990.Google Scholar
  95. 95.
    Simmon, D., G. Barbour, J. Congleton, J. Levy, and P. Meacher. Blood pressure and salt intake in Malawi: an urban-rural study. J. Epidemiol. Community Health 40: 188192, 1986.Google Scholar
  96. 96.
    Simon, G., and D. J. Conklin. In vivo erythrocyte sodium concentration in human hypertension is reduced, not increased. J. Hypertens. 4: 71–75, 1986.Google Scholar
  97. 97.
    Sing, C. F., E. Boerwinkle, and S. T. Turner. Genetics of primary hypertension. Clin. Exp. Hypertens. [A]A8: 623–651, 1986.Google Scholar
  98. 98.
    Smith, J. B., M. B. Wade, N. S. Feinberg, and M. H. Weinberger. Influence of race, sex and blood pressure on erythrocyte sodium transport in humans. Hypertension 12: 251–258, 1988.PubMedGoogle Scholar
  99. 99.
    Songu-Mize, E., B. S. Alpert, and E. S. Willey. Race, sex, and family history of hypertension and erythrocyte sodium pump 3[H]ouabain binding. Hypertension 15: 146–151, 1990.PubMedGoogle Scholar
  100. 100.
    Sowers, J. R., M. B. Zemel, P. Zemel, F. W. J. Beck, M. F. Walsh, and E. T. Zawada. Salt sensitivity in blacks. Salt intake and natriuretic substances. Hypertension 12: 485490, 1988.Google Scholar
  101. 101.
    Swales, J. D. Ion transport in hypertension. Biosci. Rep. 2: 967–990, 1982.PubMedGoogle Scholar
  102. 102.
    Sweadner, K. J., and S. M. Goldin. Active transport of sodium and potassium ions. N. Engl. J. Med. 302: 777–783, 1980.PubMedGoogle Scholar
  103. 103.
    Tobian, I. Jr., and J. T. Binion. Tissue cations and water in arterial hypertension. Circulation 5: 754–758, 1952.PubMedGoogle Scholar
  104. 104.
    Tosteson, D. C. Cation countertransport and cotransport in human red cells. Fed. Proc. 40: 1429–1433, 1981.PubMedGoogle Scholar
  105. 105.
    Trevisan, M., R. Cooper, D. Ostrow, C. Sempos, and J. Stamler. Red cell cation transport in white and black essential hypertensives. J. Hypertens. 1: 245–249, 1983.PubMedGoogle Scholar
  106. 106.
    Trevisan, M., R. Cooper, D. Ostrow, C. Sempos, S. Sparks, and J. Stamler. Red cell cation transport: racial differences between black and white school children. J. Hypertens. 1: 245–249, 1983.PubMedGoogle Scholar
  107. 107.
    Trevisan, M., V. Krogh, and the Gubbio Collaborative Study Group. Erythrocyte sodium and potassium content and blood pressure. Am. J. Hypertens. 2: 54A, 1989.Google Scholar
  108. 108.
    Trevisan, M., D. Ostrow, R. Cooper, C. Sempos, and J. Stamler. Sex and race differences in sodium-lithium countertransport and red cell sodium concentration. Am. J. Epidemiol. 120: 537–541, 1984.PubMedGoogle Scholar
  109. 109.
    Trevisan, M., D. Ostrow, R. Cooper, K. Liu, S. Sparks, A. Okopnek, E. Stevens, J. Marquardt, and J. Stamler. Abnormal red blood cell ion transport and hypertension. The People’s Gas Company Study. Hypertension 5: 363–367, 1983.PubMedGoogle Scholar
  110. 110.
    Trevisan, M., D. Ostrow, R. Cooper, K. Liu, S. Sparks, and J. Stamler. Methodological assessment of assays for red cell sodium concentration and sodium-dependent lithium efflux. Clin. Chim. Acta 116: 319–329, 1981.PubMedGoogle Scholar
  111. 111.
    Tuck, M. L., C. Gross, M. H. Maxwell, A. S. Brickman, G. Krasnoshtein, and D. Mayes. Erythrocyte Na-, K cotransport and the Na+, K-* pump in black and Caucasian hypertensive patients. Hypertension 6: 536–544, 1984.PubMedGoogle Scholar
  112. 112.
    Turner, S. T., W. H. Weidman, V. V. Michels, T. J. Reed, C. L. Ormson, T. Fuller, and C. F. Sing. Distribution of sodium-lithium countertransport and blood pressure in Caucasians five to eighty-nine years of age. Hypertension 13: 378–391, 1989.PubMedGoogle Scholar
  113. 113.
    Tuttle, R. S., and D. P. Boppana. Antihypertensive effect of interleukin-2. Hypertension 15: 89–94, 1990.PubMedGoogle Scholar
  114. Vincenzi, F. F., A. Lindern, and T. R. Hinds. Elevated intracellular free calcium in red blood cells of human hypertensives: signal of a change in the calcium pump and leak system? Am. J. Hypertens. 3(No. 5, Part 2): 52A, 1990.Google Scholar
  115. 115.
    Vincenzi, F. F., C. D. Morris, L. B. Kinsel, M. Kenny, and D. A. McCarron. Decreased calcium pump adenosine triphosphatase in red blood cells of hypertensive subjects. Hypertension 8: 1058–1066, 1986.PubMedGoogle Scholar
  116. 116.
    Ward, R. Familial aggregation and genetic epidemiology of blood pressure. In: Hypertension: Pathophysiology, Diagnosis, and Management, edited by J. H. Laragh and B. M. Brenner. Raven Press, New York, 1990, pp. 81–100.Google Scholar
  117. 117.
    Weder, A. B. Red-cell lithium-sodium countertransport and renal lithium clearance in hypertension. N. Engl. J. Med. 314: 198–201, 1986.PubMedGoogle Scholar
  118. 118.
    Weder, A. B., S. E. Bahadosingh, and G. Heagos. Platelet intracellular pH in essential hypertensives and normotensives. J. Hypertens. 7 (Suppl 6): S152 — S153, 1989.Google Scholar
  119. 119.
    Weder, A. B., B. A. Torretti, and S. Julius. Racial differences in erythrocyte cation transport. Hypertension 6: 115–123, 1984.PubMedGoogle Scholar
  120. 120.
    Weinberger, M. H., J. B. Smith, N. S. Fineberg, and F. C. Luft. Red-cell sodium-lithium countertransport and fractional excretion of lithium in normal and hypertensive humans. Hypertension 13: 206–212, 1989.PubMedGoogle Scholar
  121. 121.
    Weissberg, P. L., K. L. Woods, M. J. West, and D. G. Beever. Genetic and ethnic influences on the distribution of Na and K in normotensive and hypertensive subjects. J. Clin. Hypertens. 3: 20–25, 1987.PubMedGoogle Scholar
  122. 122.
    Williams, R. R., S. C. Hunt, S. H. Hasstedt, P. N. Hopkins, L. L. Wu, T. D. Berry, B. M. Stults, G. K. Barlow, and H. Kuida. Inherited bimodal traits and susceptibility to hypertension in Utah pedigrees. In: Salt and Hypertension, edited by R. Rettig, D. Ganten and F. C. Luft. Springer-Verlag, Heidelberg, 1989, pp. 139–155.Google Scholar
  123. 123.
    Woods, K. L., D. G. Beevers, and M. J. West. Racial differences in the red cell cation transport in white and black hypertensives. Postgrad. Med. J. 57: 769–771, 1981.Google Scholar
  124. 124.
    Woods, K. L., D. G. Beevers, and M. J. West. Racial differences in red cell cation transport and their relationship to essential hypertension. Clin. Exp. Hypertens. 3: 655–662, 1981.PubMedGoogle Scholar
  125. 125.
    Worley, R. J., W. M. Mentscled, Cormier, S. Nutting, G. Pead, K. Zelenov, J. M. Smith, K. O. Ash, and R. R. Williams. Increased sodium-lithium countertransport in erythrocytes of pregnant women. N. Engl. J. Med. 307: 412–416, 1982.PubMedGoogle Scholar
  126. 126.
    Wilcox, A. J., and I. T. Russell. Perinatal mortality: standardizing for birth weight is biased. Am. J. Epidemiol. 118: 857–864, 1983.PubMedGoogle Scholar
  127. 127.
    Zavoico, G. B., E. J. Cragoe, Jr., and M. B. Feinstein. Regulation of intracellular pH in human platelets. J. Biol. Chem. 261: 13160–13167, 1986.PubMedGoogle Scholar

Copyright information

© American Physiological Society 1993

Authors and Affiliations

  • Richard S. Cooper
  • James L. Borke

There are no affiliations available

Personalised recommendations