Oxygen Biology of Peripheral Chemoreceptors

  • Sukhamay Lahiri
Part of the Clinical Physiology Series book series (CLINPHY)

Abstract

The focus of this chapter is on “adaptive” response of aortic and carotid body chemoreceptors to chronic hyperoxia, which generates an overwhelming excess of oxygen-related free radicals (13). Prolonged normobaric hyperoxia would allow the organism to develop responses and adaptation that may not be expressed during acute hyperbaric hyperoxia. This chapter deals with two aspects of chemoreceptive functions. First, the hypothesis that aortic chemoreceptor responses to chronic hyperoxia would be different from those of carotid chemoreceptors because of a possible difference in oxygen flow to the two chemoreceptor organs (18). If proven, the results would further add to the evidence that aortic body chemoreceptors monitor combined state of systemic circulatory and respiratory oxygen flow and carotid body chemoreceptors monitor respiratory oxygen flow (18, 22). Accordingly, the two chemoreflexes from the two chemoreceptor organs are designed to perform two separate but complementary functions related to oxygen transport to tissues. The second aspect concerns the mechanism of adaptive response of peripheral chemoreceptors to chronic hyperoxia.

Keywords

Nickel Depression Dopamine Cobalt Nicotine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barnett, S., E. Mulligan, L. C. Wagerle, and S. Lahiri. Measurement of carotid body blood flow in cats by use of radioactive microspheres. J. Appl. Physiol. 65: 2484–2489, 1988.PubMedGoogle Scholar
  2. 2.
    Bauer, C., And A. Kurtz. Oxygen sensing in the kidney and its relation to erythropoietin production. Ann. Rev. Physiol. 51: 845–856, 1989.CrossRefGoogle Scholar
  3. 3.
    Daly, M. Deb., C. J. Lamberstsen, and A. Schweitzer. Observations on the volume of blood flow and oxygen utilization of the carotid body in the cat. J. Physiol. (London) 125: 6789, 1954.Google Scholar
  4. 4.
    Degner, F., And H. Acker. Mathematical analysis of tissue PO, distribution in the cat carotid body. Pfluegers Arch. 407: 305–311, 1986.CrossRefGoogle Scholar
  5. 5.
    DI Giulio, C., W-X. Huang, S. Lahiri, A. Mokashi, and D. G. Buerk. Cobalt stimulates carotid body chemoreceptors. J. Appl. Physiol. 68: 1844–1849, 1990.PubMedGoogle Scholar
  6. 6.
    Duchen, M. R., K. W. T. Caddey, G. C. Kirby, D. L. Patterson, J. Ponte, And T. J. Biscoe. Biophysical studies of the cellular elements of the rabbit carotid body. Neuroscience 26: 291–311, 1988.CrossRefPubMedGoogle Scholar
  7. 7.
    Eyzaguirre, C., R. S. Fitzgerald, S. Lahiri, and P. Zapata. Arterial chemoreceptor. In: Handbook of Physiology—Peripheral Circulation and Organ Blood Flow, ed. J. T. Shepherd, and F. M. Abboud. Bethesda, MD: Am. Physiol. Soc., 1983, sect. 2, vol. Iii, pt. 2, chapt. 16, pp. 557–621.Google Scholar
  8. 8.
    Fitzgerald, R. S., And S. Lahiri. Reflex responses to chemoreceptor stimulation. In: Handbook of Physiology—The Respiratory System, ed. N. S. Cherniack and J. G. Widdicombe. Bethesda, MD: Am. Physiol. Soc., 1986, sect. 3, vol. II, pt. 1, chapt. 10, pp. 313–362.Google Scholar
  9. 9.
    Folgering, H., and P. C. G. Nye. A breath of carbon monoxide raises arterial Poe. J. Physiol. (London) 319: 89P, 1980.Google Scholar
  10. 10.
    Freeman, B. A., and J. D. Crapo. Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria. J. Biol. Chem. 256: 10986–10992, 1981.PubMedGoogle Scholar
  11. 11.
    Furchgot, R. F., and D. Jothianandan. Endothelium-independent relaxation of rabbit aorta by carbon monoxide. Faseb. J. 3: A1177, 1989.Google Scholar
  12. 12.
    Goldberg, M. A., S. P. Dunning, and H. F. Bunn. Regulation of the erythropoietin gene: evidence that oxygen sensor is a heme protein. Science 242: 1412–1415, 1988.CrossRefPubMedGoogle Scholar
  13. 13.
    Grisham, M. B., and D. N. Granger. Metabolic sources of reactive oxygen metabolites during oxidant stress and ischemia with reperfusion. Clin. Chest Med. 10:71–81, 1989.Google Scholar
  14. 14.
    Hackenbrock, C. R. Ultrastructural bases for metabolically linked mechanical activity in mitochondria. J. Cell Biol. 30: 269–296, 1966.CrossRefPubMedGoogle Scholar
  15. 15.
    Howe, A. The vasculature of the aortic bodies in the cat. J. Physiol. (London) 134: 311–318, 1956.Google Scholar
  16. 16.
    Joels, N., and E. Neil. The action of high tensions of carbon monoxide on the carotid chemoreceptors. Arch. Int. Pharmocodyn. Ther. 139: 528–534, 1962.Google Scholar
  17. 17.
    Krylov, S. S., and S. V. Anichkov. The effect of metabolic inhibitors on carotid chemoreceptor. In: Arterial Chemoreceptors, ed. R.W. Torrance. Oxford: Blackwell, 1968, pp. 103–109.Google Scholar
  18. 18.
    Lahiri, S. Role of arterial 02 flow in peripheral chemoreceptor excitation. Federation Proc. 39: 2648–2652, 1980.Google Scholar
  19. 19.
    Lahiri, S. Chemical modification of carotid body chemoreception by sulfhydryls. Science 212: 1065–1066, 1981.CrossRefPubMedGoogle Scholar
  20. 20.
    Lahiri, S., E. Mulligan, S. Andronikou, M. Shirahata, and A. Mokashi. Carotid body chemosensory function in prolonged normobaric hyperoxia in the cat. J. Appl. Physiol. 62: 1924–1931, 1987.PubMedGoogle Scholar
  21. 21.
    Lahiri, S., E. Mulligan, T. Nishino, and A. Mokashi. Aortic body chemoreceptor responses to changes in Pco2 and Poe in the cat. J. Appl. Physiol. 47: 858–866, 1979.PubMedGoogle Scholar
  22. 22.
    Lahiri, S., T. Nishino, E. Mulligan, And A. Mokashi. Relative latency of responses of chemoreceptor afferents from aortic and carotid bodies. J. Appl. Physiol. 48: 262–269, 1980.Google Scholar
  23. 23.
    Lloyd, B. B., D. J. C. Cunningham, and R. C. Goode. Depression of hypoxic hyperventilation in man by sudden inspiration of carbon monoxide. In: Arterial Chemoreceptors, ed. R. W. Torrance. Oxford: Blackwell, 1988, pp. 145–147.Google Scholar
  24. 24.
    Lopez-Barneo, J., J. R. Lopez-Lopez, J. Urensa, and C. Gonzalez. Chemotransduction in the carotid body: K’ current modulated by Poe in type I chemoreceptor cells. Science 241: 580–582, 1988.CrossRefGoogle Scholar
  25. 25.
    Mcdonald, D. M. Peripheral chemoreceptors: structure–function relationship of the carotid body. In: Regulation of Breathing, ed. T. F. Hornbein. New York: Marcel Dekker, 1981, vol. 17, pt. II, chapt. 12, pp. 773–843.Google Scholar
  26. 26.
    Mulligan, E., and S. Lahiri. Dependence of carotid chemoreceptor stimulation by metabolic inhibitors on Pao, and Paco,. J. Appl. Physiol. 50: 884–891, 1981.PubMedGoogle Scholar
  27. 27.
    Mulligan, E., S. Lahiri, and B. Storey. Carotid body O, chemoreception and mitochondrial oxidative phosphorylation. J. Appl. Physiol. 51: 438–446, 1981.PubMedGoogle Scholar
  28. 28.
    Nonidez, J. F. Observations on the blood supply and the innervation of the aortic paraganglion of the cat. J. Anat. (London) 70: 215–224, 1936.Google Scholar
  29. 29.
    Shirahata, M., S. Andronikou, and S. Lahiri. Differential effects of oligomycin on carotid chemoreceptor responses to 02 and CO2 in the cat. J. Appl. Physiol. 63: 2084–2092, 1987.PubMedGoogle Scholar
  30. 30.
    Wilson, D. F., W. L. Rumsey, T. J. Green, M. Robiolio, and J. M. Vanderkooi. Intracellular oxygen concentration and its role in energy metabolism. In: Chemoreceptors and Reflexes in Breathing: Cellular and Molecular Aspects, ed. S. Lahiri, R. E. Forster, R. O. Davies, and A. I. Pack. New York: Oxford University Press, 1989, pp. 164–174.Google Scholar

Copyright information

© American Physiological Society 1991

Authors and Affiliations

  • Sukhamay Lahiri

There are no affiliations available

Personalised recommendations