Advertisement

Hypoxia and Erythropoietin Production

  • James W. Fisher
  • M. Ueno
  • J. Nakashima
  • Barbara Beckman
Part of the Clinical Physiology Series book series (CLINPHY)

Abstract

Hypoxia is known to be the fundamental stimulus for the control of erythropoietin production (13, 14, 20, 31). Several external messenger substances are released during hypoxia, which activate adenylate cyclase, and increase the generation of the second messenger cyclic AMP, which is involved in the regulation of erythropoietin (Ep) production (14, 20). Some of the factors that are known to be released during hypoxia and seem to be involved in the regulation of Ep production are adenosine (37), oxygen-derived metabolites (38), eicosanoids (26), and beta2-adrenergic agonists (12). These external messenger substances can act alone or in concert to trigger receptors that activate stimulatory G proteins in the membrane of a renal Ep-producing cell, and increase adenylate cyclase and cyclic AMP. Cyclic AMP causes the dissociation of the regulatory subunit from the catalytic head of protein kinase A. Important phosphoproteins are generated by kinase A in the kidney, which may lead to increased biosynthesis of Ep at the level of transcription of messenger RNA or the translation of Ep in the renal cell. In addition, phosphoproteins could be involved with the actual release process for Ep in the cell. Atrial natriuretic factor (ANF) is known to be released during hypoxia (2, 3) and to increase Ep secretion in renal carcinoma cells in culture through an ANF receptor mechanism coupled to guanylate cyclase (39). The purpose of this presentation is to review the regulatory factors that may be involved in hypoxic stimulation of kidney production of Ep.

Keywords

Xanthine Oxidase Renal Carcinoma Atrial Natriuretic Factor Ischemic Hypoxia Reactive Oxygen Metabolite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ager, A., and J. L. Gordon. Differential effects of hydrogen peroxide on indices of endothelial cell function. J. Exp. Med. 159: 592–603, 1984.CrossRefPubMedGoogle Scholar
  2. 2.
    Baertschi, A. J., J. M. Adams, and M. P. Sullivan. Acute hypoxemia stimulates atrial natriuretic factor secretion in vivo. Am. J. Physiol. 255: H295–H300, 1988.PubMedGoogle Scholar
  3. 3.
    Baertschi, A. J., C. Hausmaninger, R. S. Walsh, R. M. Mentzer JR., D. A. Wyatt, and R. A. Pence. Hypoxia-induced release of atrial natriuretic factor (Anf) from the isolated rat and rabbit heart. Biochem. Biophs. Res. Comm. 140: 427–433, 1986.Google Scholar
  4. 4.
    Barger, A. C., and J. A. Herd. The renal circulation. N. Engl. J. Med. 284: 482–490, 1971.CrossRefPubMedGoogle Scholar
  5. 5.
    Baud, L., J. Hagege, J. E. Spaer, J. Rondeau, R. Perez, and J. Ardaillou. Reactive oxygen production by cultured rat glomerular mesangial cells during phagocytosis is associated with stimulation of lipoxygenase activity. J. Exp. Med. 158: 1836–1852, 1983.CrossRefPubMedGoogle Scholar
  6. 6.
    Baud, L., M. P. Nivez, D. Chansel, and R. Ardaillou. Stimulation by oxygen radicals of prostaglandin production by rat renal glomeruli. Kidney Int. 20: 332–339, 1981.CrossRefPubMedGoogle Scholar
  7. 7.
    Churchill, P. C., and J. Churchill. A1 and AZ adenosine receptor activation inhibits and stimulates renin secretion of rat renal cortical slices. J. Phar. Exper. Ther. 232(3):589–594, 1985.Google Scholar
  8. 8.
    Cotes, M., and D. R. Bangham. Bioassay of erythropoietin in mice made polycythemic by exposure to air at a reduced pressure. Nature 191: 1065–1067, 1961.CrossRefPubMedGoogle Scholar
  9. 9.
    Daly, J. W. Adenosine receptors: characterization with radioactive ligands. In: Physiology and Pharmacology of Adenosine Derivates, eds. J. W. Daly, Y. Kuroda, J. W. Phillis, H. Shimizu, and M. Ui. New York: Raven Press, 1983, pp. 59–70.Google Scholar
  10. 10.
    Dionisi, O., T. Galeotti, T. Terranova, and A. Azzi. Superoxide radicals and hydrogen peroxide formation in mitochondria from normal and neoplastic tissues. Biochem. Biophys. Acta 403: 292–300, 1975.CrossRefGoogle Scholar
  11. 11.
    Fink, G. D., and J. W. Fisher. Stimulation of erythropoiesis by beta adrenergic agonists. II. Mechanism of action. J. Pharmacol. Exp. Ther. 202: 199–208, 1977.PubMedGoogle Scholar
  12. 12.
    Fink, G. D., L. G. Paulo, and J. W. Fisher. Effects of beta-adrenergic blocking agents on erythropoietin production in rabbits exposed to hypoxia. J. Pharmacol. Exp. Ther. 193: 176–181, 1975.PubMedGoogle Scholar
  13. 13.
    Fisher, J. W. Control of erythropoietin production. Proc. Soc. Exp. Biol. Med. 173: 289–305, 1983.Google Scholar
  14. 14.
    Fisher, J. W. Pharmacologic modulation of erythropoietin production. Ann. Rev. Pharmacol. Toxicol. 28: 101–122, 1988.Google Scholar
  15. 15.
    Grisham, M. B., and J. M. Mccord. Superoxide and Superoxide Dismutase in Chemistry, Biol. and Med. Amsterdam, New York: Elsevier, 1988, pp. 571–575.Google Scholar
  16. 16.
    Hagiwara, M., I. Chen, R. Mcgonigle, B. S. Beckman, F. H. Kasten, and J. W. Fisher. Erythropoietin production in a primary culture of human renal carcinoma cells maintained in nude mice. Blood 63: 828–835, 1984.PubMedGoogle Scholar
  17. 17.
    Hagiwara, M., D. B. Mcnamara, I. Chen, and J. W. Fisher. Role of endogenous prostaglandin E in erythropoietin production and dome formation by human renal carcinoma cells in culture. J. Clin. Invest. 74: 1251–1261, 1984.Google Scholar
  18. 18.
    Hagiwara, M., S. M. Pincus, I. -L. Chen, B. S. Beckman, and J. W. Fisher. Effects of dibutyryl adenosine 3’, 5’-cyclic monophosphate on erythropoietin production in human renal carcinoma cell cultures. Blood 66 (3): 714–717, 1985.PubMedGoogle Scholar
  19. 19.
    Harlan, J. M., and K. S. Callahan. Role of hydrogen peroxide in the neutrophil-mediated release of prostacyclin from cultured endothelial cell. J. Clin. Invest. 74: 442–448, 1984.CrossRefGoogle Scholar
  20. 20.
    Jelkmann, W. Renal erythropoietin: properties and production. Rev. Physiol. Biochem. Pharmacol. 104: 139–215, 1986.CrossRefPubMedGoogle Scholar
  21. 21.
    Lipkin, E. W., D. C. Teller, and C. DE Haen. Dynamic aspects of insulin action: synchronization of oscillatory glycolysis in isolated perfused rat fat cells by insulin and hydrogen peroxide. Biochem 22: 792, 1983.CrossRefGoogle Scholar
  22. 22.
    Masongarcia, M., B. S. Beckman, J. W. Brookins, J. S. Powell, W. Lanham, S. Blaisdell L. Keay, S.C. LI, and J. W. Fisher, Development of a New Radioimmunoassay for Erythropoietin Using Recombinant Erythropoietin. Kid. Int. (in press), 1990.Google Scholar
  23. 23.
    Mccord, J. M. Mechanisms of disease. N. Engl. J. Med. 312: 159–163, 1985.Google Scholar
  24. 24.
    Mccord, J. M. Oxygen-derived free radicals in postischemic tissue injury. N. Engl. J. Med. 312: 159–163, 1985.Google Scholar
  25. 25.
    Miller, W. L., R. A. Thomas, R. M. Berne, and R. Rubio. Adenosine production in the ischemic kidney. Circ. Res. 43: 390–397, 1978.CrossRefPubMedGoogle Scholar
  26. 26.
    Nelson, P. K., J. Brookins, and J. W. Fisher. Erythropoietic effects of prostacyclin (Pgi2) and its metabolite 6-keto-prostaglandin E (6Kpge2). J. Pharmacol. Exp. Ther. 226: 493–499, 1983.PubMedGoogle Scholar
  27. 27.
    Nelson, J. A., and S. Drake. Potentiation of methotrexate toxicity by dipyridamole. Cancer Res. 44: 2493–2496, 1984.PubMedGoogle Scholar
  28. 28.
    Nilsson, R., F. M. Pick, and R. C. Bray. Epr studies on reduction of oxygen to superoxide by some biochemical oxidase. Biochim. Biophys. Acta 192: 145–148, 1969.CrossRefGoogle Scholar
  29. 29.
    Oberly, L. W., and G. R. Buettner. Role of superoxide dismutase in cancer: a review. Cancer Res. 39: 1141–1149, 1979.Google Scholar
  30. 30.
    Powell, J. W., K. L. Berkner, R. V. Lebo, and J. W. Adamson. Human erythropoietin gene: high level expression in stably transfected mammalian cells and chromosome localization. Proc. Natl. Scad. Sci. 83: 6465–6469, 1986.CrossRefGoogle Scholar
  31. 31.
    Reissman, K. R. Studies on the mechanism of erythropoietic stimulation of parabiotic rats during hypoxia. Blood 5: 372–380, 1950.Google Scholar
  32. 32.
    Rege, A. B., J. Brookins, and J. W. Fisher. Radioimmunossay for erythropoietin. Serum levels in human subjects and patients with hemopoietic disorders. J. Lab. Clin. Med. 100: 829–843, 1982.Google Scholar
  33. 33.
    Rodgers, G. M., J. W. Fisher, and W. J. George. The role of renal adenosine 3’, 5’-monophosphate in the control of erythropoietin production. Am. J. Med. 58: 31–38, 1975.CrossRefPubMedGoogle Scholar
  34. 34.
    Seferynska, I., J. Brookins, J. C. Rice, and J. W. Fisher. Erythropoietin production in the exhypoxic polycythemic mouse assay system. Am. J. Physiol. 256: C925–C929, 1989.Google Scholar
  35. 35.
    Shah, S. V. Effect of enzymatically generated reactive oxygen metabolites on the cyclic nucleotide content in isolated rat glomeruli. J. Clin. Invest. 74: 393–401, 1984.Google Scholar
  36. 36.
    Spielman, W. S. Antagonistic effect of theophylline on the adenosine-induced decrease in renin release. Am. J. Physiol. 247: F246–F251, 1984.Google Scholar
  37. 37.
    Ueno, M., J. Brookins, B. S. Beckman, and J. W. Fisher. A, and A2 adenosine receptor regulation of erythropoietin production. Life Sci. 43: 229–237, 1988.CrossRefPubMedGoogle Scholar
  38. 38.
    Ueno, M., J. Brookins, B. S. Beckman, and J. W. Fisher. Effects of reactive oxygen metabolites on erythropoietin production in renal carcinoma cells. Biochem. Biophy. Res. Comm. 154 (2): 773–780, 1988.CrossRefGoogle Scholar
  39. 39.
    Ueno, M., I. Rondon, B. S. Beckman, J. Brookins, J. Nakashima, E. F. Cole, and J. W. Fisher. Increased secretion of erythropoietin in response to atrial natriuretic factor (Anf) in renal carcinoma cell cultures. Am. J. Physiol. (in press), 1990.Google Scholar
  40. 40.
    Weiss, S. J., J. Young, A. F. Lobuglio, A. Slivxa, and N. F. Nimeh. Role of hydrogen peroxide in neutrophil-mediated destruction of cultured endothelial cells. J. Clin. Invest. 68: 714–721, 1981.CrossRefPubMedGoogle Scholar

Copyright information

© American Physiological Society 1991

Authors and Affiliations

  • James W. Fisher
  • M. Ueno
  • J. Nakashima
  • Barbara Beckman

There are no affiliations available

Personalised recommendations