Advertisement

Hypoxic Birds: Temperature and Respiration

  • Marvin H. Bernstein
Part of the Clinical Physiology Series book series (CLINPHY)

Abstract

The extreme cold at high altitudes compounds the hypoxic challenge that resident animals must meet. A bird called the alpine chough (Pyrrhocorax graculus), for example, lives and reproduces at 6500 m (53) where the Po2 is 69 mm Hg and the temperature averages −27°C (43). Despite increased solar radiation and efficient insulation, this and similar species undoubtedly increase their O2 utilization in defending homeothermy while at rest. Montane birds, like lowland birds, use flight as a primary mode of locomotion. Moreover, some sea-level residents climb to high altitudes where they may migrate great distances. Increased exposure, as birds spread the wings, along with increased convection to subfreezing air, unavoidably increase heat loss. The saving factor, perhaps, is that flight, the most metabolically demanding form of vertebrate exercise, is accompanied by huge quantities of heat production in the pectoral muscles. Thus, the source of power for the activity that causes the loss of heat also produces its replacement.

Keywords

High Altitude Heat Loss Heat Production Pectoral Muscle Brain Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arad, Z., U. Midtgard, and M. H. Bernstein. Thermoregulation in turkey vultures: vascular anatomy, arteriovenous heat exchange, and behavior. The Condor 91: 505–514, 1989.CrossRefGoogle Scholar
  2. 2.
    Aulie, A. Body temperatures in pigeons and budgerigars during sustained flight. Comp. Biochem. Physiol. 39: 173–176, 1971.CrossRefGoogle Scholar
  3. 3.
    Baudinette, R. V., J. P. Loveridge, K. J. Wilson, and K. Schmidt-Nielsen. Heat loss from feet of herring gulls at rest and during flight. Am. J. Physiol. 230: 920–924, 1976.PubMedGoogle Scholar
  4. 4.
    Baudinette, R. V., and K. Schmidt-Nielsen. Energy cost of gliding flight in herring gulls. Nature 248: 83–84, 1974.CrossRefGoogle Scholar
  5. 5.
    Bennett, A. F. Thermal dependence of muscle function. Am. J. Physiol. 247: R217 - R229, 1984.PubMedGoogle Scholar
  6. 6.
    Berger, M., J. S. Hart, and O. Z. Roy. Respiratory water and heat loss of the black duck during flight at different ambient temperatures. Can. J. Zool. 49: 767–774, 1971.PubMedCrossRefGoogle Scholar
  7. 7.
    Bernstein, M. H. Cutaneous water loss in small birds. Condor 73: 468–469, 1971.CrossRefGoogle Scholar
  8. 8.
    Bernstein, M. H. Vascular responses and foot temperature in pigeons. Am. J. Physiol. 226: 1350–1355, 1974.PubMedGoogle Scholar
  9. 9.
    Bernstein, M. H. Respiration in flying birds. In: Bird Respiration, ed. T. J. Sellers. Boca Raton: Crc Press, II: 1987, pp. 43–74.Google Scholar
  10. 10.
    Bernstein, M. H., M.B. Curtis, and D. M. Hudson. Independence of brain and body temperatures in flying American kestrels, Falco sparverius. Am. J. Physiol. 237: R58 - R62, 1979.PubMedGoogle Scholar
  11. 11.
    Bernstein, M. H., H. L. Duran, and B. Pinshow. Extrapulmonary gas exchange enhances brain oxygen in pigeons. Science 226: 564–566, 1984.PubMedCrossRefGoogle Scholar
  12. 12.
    Bernstein, M. H., I. Sandoval, M. B. Curtis, and D. M. Hudson. Brain temperature in pigeons: effects of anterior respiratory bypass. J. Comp. Physiol. 129:115–118, 1979.Google Scholar
  13. 13.
    Bernstein, M. H., S. P. Thomas, and K. Schmidt-Nielsen. Power input during flight of the fish crow, Corvus ossifragus. J. Exper. Biol. 58: 401–410, 1973.Google Scholar
  14. 14.
    Bernstein, M. H., C. Tiqui, K. M. Ramirez, and J. Manzanares. Brain and body temperatures in pigeons at simulated high altitudes. (submitted).Google Scholar
  15. 15.
    Black, C. P., and S. M. Tenney. Oxygen transport during progressive hypoxia in high-altitude and sea-level waterfowl. Respir. Physiol. 39: 217–239, 1980.PubMedCrossRefGoogle Scholar
  16. 16.
    Black, C. P., S. M. Tenney, and M. Van Kroonenburg. Oxygen transport during progressive hypoxia in bar-headed geese (Anser indicus) acclimated to sea level and 5600 m. In: Respiratory Function in Birds, Adult and Embryonic, ed. J. Piiper, New York: Springer-Verlag, 1978.Google Scholar
  17. 17.
    Bouverot, P., G. Hildwein, and P. Oulhen. Ventilatory and circulatory O2 convection at 4000 m in pigeon at neutral or cold temperature. Respir. Physiol. 28: 371–385, 1976.PubMedCrossRefGoogle Scholar
  18. 18.
    Brent, R., P. F. Pedersen, C. Bech, and K. Johansen. Lung ventilation and temperature regulation in the European coot (Fulica atra). Physiol. Zool. 57: 19–25, 1984.Google Scholar
  19. 19.
    Burgoon, D. A., D. L. Kilgore, Jr., and P. J. Motta. Brain temperature in the calliope hummingbird (Stellula calliope): a species lacking a rete mirabile ophthalmicum. J. Comp. Physiol. B 157: 583–588, 1987.CrossRefGoogle Scholar
  20. 20.
    Butler, P. J. The effect of progressive hypoxia on the respiratory and cardiovascular systems of the pigeon and duck. J. Physiol. 201: 527–538, 1970.Google Scholar
  21. 21.
    Butler, P. J., N. H. West, and D. R. Jones. Respiratory and cardiovascular responses of the pigeon to sustained, level flight in a wind-tunnel. J. Exp. Biol. 71: 7–26, 1977.Google Scholar
  22. 22.
    Chappell, M. A., and T. L. Bucher. Effects of temperature and altitude on ventilation and gas exchange in chukars (Alectoris chukar). J. Comp. Physiol. B 157: 129–136, 1987.CrossRefGoogle Scholar
  23. 23.
    Colacino, J. M., D. H. Hector, and K. Schmidt-Nielsen. Respiratory responses of ducks to simulated altitude. Respir. Physiol. 29: 265–281, 1977.PubMedCrossRefGoogle Scholar
  24. 24.
    Ederstrom, H. E., and S. J. Brumleve. Temperature gradients in the legs of cold-acclimatized pheasants. Am. J. Physiol. 207: 457–459, 1964.PubMedGoogle Scholar
  25. 25.
    Faraci, F. M., D. L. Kilgore, Jr., and M. R. Fedde. Oxygen delivery to the heart and brain during hypoxia: pekin duck vs. bar-headed goose. Am. J. Physiol. 247: R69 - R75, 1984.PubMedGoogle Scholar
  26. 26.
    Fedde, M. R., F. M. Faraci, D. L. Kilgore, Jr., G. H. Cardinet, Iii, and A. Chatterjee. Cardiopulmonary adaptations in birds for exercise at high altitude. In: Circulation, Respiration, and Metabolism, ed. R. Gilles. New York: Springer-Verlag, 1985.Google Scholar
  27. 27.
    Frost, P. G. H., and W. R. Siegfried. Use of legs as dissipators of heat in flying passerines. Zool. Afr. 10: 101–102, 1975.Google Scholar
  28. 28.
    Frost, P. G. H., W. R. Siegfried, and P. J. Greenwood. Arteriovenous heat exchange systems in the jackass penguin, Spheniscus demersus. J. Zool. 175: 231–241, 1975.CrossRefGoogle Scholar
  29. 29.
    Gleeson, M., G. M. Barnas, and W. Rautenberg. The effects of hypoxia on the metabolic and cardiorespiratory responses to shivering produced by external and central cooling in the pigeon. Pflügers Archiv 407: 312–319, 1986.PubMedCrossRefGoogle Scholar
  30. 30.
    Gleeson, M., G. M. Barnas, and W. Rautenberg. Cardiorespiratory responses to shivering in vagotomized pigeons during normoxia and hypoxia. Pflügers Archiv 407: 664–669, 1986.PubMedCrossRefGoogle Scholar
  31. 31.
    Goldspink, G., C. Mills, and K. Schmidt-Nielsen. Electrical activity of the pectoral musIles during gliding and flapping flight in the herring gull (Larus argentatus). Experientia 34: 862–865, 1978.CrossRefGoogle Scholar
  32. 32.
    Graf, R. Diurnal cycles of thermoregulation and hypothermia. International Ornithological Congress (17th), Berlin, Germany, Acta 1: 331–335, 1978.Google Scholar
  33. 33.
    Grubb, B., J. M. Colacino, and K. Schmidt-Nielsen. Cerebral blood flow in birds: effect of hypoxia. Am. J. Physiol. 234: H230 - H234, 1978.PubMedGoogle Scholar
  34. 34.
    Hagan, A. A., and J. E. Heath. Regulation of heat loss in the duck by vasomotion in the bill. J. Thermal Biol. 5: 95–101, 1980.CrossRefGoogle Scholar
  35. 35.
    Hart, J. S., and O. Z. Roy. Temperature regulation during flight in pigeons. Am. J. Physiol. 213: 1311–1316, 1967.PubMedGoogle Scholar
  36. 36.
    Hirth, K.-D., W. Biesel, and W. Nachtigall. Pigeon flight in a wind tunnel. J. Comp. Physiol. B. 157: 111–116, 1987.CrossRefGoogle Scholar
  37. 37.
    Hudson, D. M., and M. H. Bernstein. Temperature regulation and heat balance in flying white-necked ravens, Corvus cryptoleucus. J. Exp. Biol. 90: 267–281, 1981.Google Scholar
  38. 38.
    Johansen, K., and R. W. Millard. Vascular responses to temperature in the foot of the giant fulmar, Macronectes giganteus. J. Comp. Physiol. 85: 47–64, 1973.CrossRefGoogle Scholar
  39. 39.
    Kiley, J. P., F. M. Faraci, and M. R. Fedde. Gas exchange during exercise in hypoxic ducks. Respir. Physiol. 59: 105–115, 1985.PubMedCrossRefGoogle Scholar
  40. 40.
    Kilgore, D. L., JR., M. H. Bernstein, and D. M. Hudson. Brain temperatures in birds. J. Comp. Physiol. 110: 209–215, 1976.Google Scholar
  41. 41.
    Kilgore, D. L., JR., G. F. Birchard, and D. F. Boggs. Brain temperatures in running quail. J. Appl. Physiol. 50: 1277–1281, 1981.PubMedGoogle Scholar
  42. 42.
    Lasiewski, R. C., and W. R. Dawson. A re-examination of the relation between standard metabolic rate and body weight in birds. Condor 69:13–23, 1967.Google Scholar
  43. 43.
    Lentner, C. Geigy Scientific Tables. Ciba-Geigy Limited, Basle, Switzerland, Vol. 3, 1984.Google Scholar
  44. 44.
    Midtgard, U. Heat loss from the feet of mallards, Anas platyrhynchos, and arterio-venous heat exchange in the rete tibiotarsale. Ibis 122: 354–359, 1980.CrossRefGoogle Scholar
  45. 45.
    Midtgard, U. The blood vascular system in the head of the herring gull (Larus argentatus). J. Morphology 179: 135–152, 1984.CrossRefGoogle Scholar
  46. 46.
    Midtgard, U. Eye temperatures in birds and the significance of the rete ophthalmicum. Vidensk. Meddr dansk naturh. Foren. 145: 173–181, 1984.Google Scholar
  47. 47.
    Midtgard, U. Innervation of the avian ophthalmic rete. Fortschritte der Zoologie 30: 401–404, 1985.Google Scholar
  48. 48.
    Pinshow, B., M. H. Bernstein, and Z. Arad. Effects of temperature and Pco2 on O2 affinity of pigeon blood: implications for brain O2 supply. Am. J. Physiol. 249: R758 - R764, 1985.PubMedGoogle Scholar
  49. 49.
    Pinshow, B., M. H. Bernstein, G. E. Lopez, and S. Kleinhaus. Regulation of brain temperature in pigeons: effects of corneal convection. Am. J. Physiol. 242: R577 - R581, 1982.PubMedGoogle Scholar
  50. 50.
    Schmidt-Nielsen, K., F. R. Hainsworth, and D. E. Murrish. Countercurrent heat exchange in the respiratory passages: effect on water and heat balance. Respir. Physiol. 9: 263–276, 1970.PubMedCrossRefGoogle Scholar
  51. 51.
    Shams, H., and P. Scheid. Respiration and blood gases in the duck exposed to normocapnic and hypercapnic hypoxia. Respir. Physiol. 67: 1–12, 1987.PubMedCrossRefGoogle Scholar
  52. 52.
    Steen, I., and J. B. Steen. The importance of the legs in the thermoregulation of birds. Acta Physiol. Scand. 63: 285–291, 1965.PubMedCrossRefGoogle Scholar
  53. 53.
    Swan, L. W. The ecology of the high Himalayas. Sci. Am. 205: 68–78, 1961.CrossRefGoogle Scholar
  54. 54.
    Torre-Bueno, J. R. Temperature regulation and heat dissipation during flight in birds. J. Exp. Biol. 65: 471–482, 1976.PubMedGoogle Scholar
  55. 55.
    Torre-Bueno, J. R. Evaporative cooling and water balance during flight in birds. J. Exp. Biol. 75: 231–236, 1978.PubMedGoogle Scholar
  56. 56.
    Tucker, V. A. Respiratory physiology of house sparrows in relation to high-altitude flight. J. Exp. Biol. 48: 55–66, 1968.PubMedGoogle Scholar
  57. 57.
    Tucker, V. A. Respiratory exchange and evaporative water loss in the flying budgerigar. J. Exp. Biol. 48: 67–87, 1968.Google Scholar
  58. 58.
    Tucker, V. A. Energetics of natural avian flight. In: Avian Energetics, ed. R. A. Paynter. Cambridge: Nuttall Ornithological Club, 1974.Google Scholar
  59. 59.
    Veghte, J. H. Thermal exchange between the raven, Corvus corax, and its environment. Ph.D. Thesis, University of Michigan 1976.Google Scholar
  60. 60.
    Weinstein, Y., M. H. Bernstein, P. E. Bickler, D. V. Gonzales, F. C. Samaniego, and M. A. Escobedo. Blood respiratory properties in pigeons at high altitudes: effects of acclimation. Am. J. Physiol. 249: R765 - R775, 1985.PubMedGoogle Scholar

Copyright information

© American Physiological Society 1991

Authors and Affiliations

  • Marvin H. Bernstein

There are no affiliations available

Personalised recommendations