Skip to main content

Ion Channel Kinetics: A Fractal Time Sequence of Conformational States

  • Chapter
Fractal Physiology

Part of the book series: Methods in Physiology Series ((METHPHYS))

  • 341 Accesses

Abstract

Ions such as sodium, potassium, and chloride can move freely through water but cannot cross the hydrophobic lipids that form the cell membrane. However, these ions can interact with proteins in the cell membrane that transport them across the cell membrane. Three types of proteins are involved in ion transport: 1) Pumps, such as the sodium-potassium ATPase, bind tightly to a few ions at a time and use energy from ATP to move these ions against their electrochemical gradient. 2) Carriers, such as the sodium-potassium-chloride cotransporter, bind tightly to a few ions at a time and help them move down their electrochemical gradient. 3) Channels, such as the sodium channel, bind weakly to many ions at a time and allow them to move down their electrochemical gradient.

These equations can be given a physical basis if we assume that potassium can only cross the membrane when four similar particles occupy a certain region of the membrane...and if the sodium conductance is assumed to be proportional to the number of sites on the inside of the membrane which are occupied simultaneously by three activating molecules but are not blocked by an inactivating molecule.

Hodgkin and Huxley (1952)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Background references

  • Sakmann, B., and E. Neher. Single-Channel Recording. New York: Plenum Press, 1983, 503 pp.

    Google Scholar 

  • Hille, B. Ionic Channels of Excitable Membranes. Sunderland, Mass.: Sinauer Associates, 1984, 426 pp.

    Google Scholar 

  • Liebovitch, L. S., J. Fischbarg, and J. P. Koniarek. Ion channel kinetics: a model based on fractal scaling rather than multistate Markov processes. Math. Biosci. 84: 37 - 68, 1987a.

    Article  Google Scholar 

  • Liebovitch, L. S., and J. M. Sullivan. Fractal analysis of a voltage-dependent potassium channel from cultured mouse hippocampal neurons. Biophys. J. 52: 979 - 988, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Liebovitch, L. S., and T. I. Tóth. Fractal activity in cell membrane ion channels. Ann. NYAcad. Sci. 591: 375 - 391, 1990a.

    CAS  Google Scholar 

  • Liebovitch, L. S., and T. I. Tóth. Using fractals to understand the opening and closing of ion channels. Ann. Biomed. Eng. 18: 177 - 194, 1990b.

    Article  PubMed  CAS  Google Scholar 

  • Liebovitch, L. S. Analysis of fractal ion channel gating kinetics: kinetic rates, energy levels, and activation energies. Math. Biosci. 93:97-115, 1989a. Liebovitch, L. S. Testing fractal and Markov models of ion channel kinetics. Biophys. J. 55: 373 - 377, 1989b.

    Article  PubMed  CAS  Google Scholar 

  • Liebovitch, L. S., and T. I. T6th. The Akaike information criterion (AIC) is not a sufficient condition to determine the number of ion channel states from single channel recordings. Synapse 5: 134 - 138, 1990c.

    Article  PubMed  CAS  Google Scholar 

  • French, A. S., and L. L. Stockbridge. Fractal and Markov behavior in ion channel kinetics. Can. J. Physiol. Pharmacol. 66: 967 - 970, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Stockbridge, L. L., and A. S. French. Characterization of a calcium-activated potassium channel in human fibroblasts. Can. J. Physiol. Pharmacol. 67: 1300 - 1307, 1989.

    Article  PubMed  CAS  Google Scholar 

  • McManus, O. B., D. S. Weiss, C. E. Spivak, A. L. Blatz, and K. L. Magleby. Fractal models are inadequate for the kinetics of four different ion channels. Biophys. J. 54: 859 - 870, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Korn, S. J., and R. Horn. Statistical discrimination of fractal and Markov models of single-channel gating. Biophys. J. 54: 871 - 877, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Sansom, M. S. P., F. G. Ball, C. J. Kerry, R. McGee, R. L. Ramsey, and P. N. R. Usherwood. Markov, fractal, diffusion, and related models of ion channel gating. Biophys. J. 56: 1229 - 1243, 1989.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 American Physiological Society

About this chapter

Cite this chapter

Bassingthwaighte, J.B., Liebovitch, L.S., West, B.J. (1994). Ion Channel Kinetics: A Fractal Time Sequence of Conformational States. In: Fractal Physiology. Methods in Physiology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7572-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7572-9_8

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7572-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics