Generating Fractals

  • James B. Bassingthwaighte
  • Larry S. Liebovitch
  • Bruce J. West
Part of the Methods in Physiology Series book series (METHPHYS)


Examples provided earlier as introductions to fractal ideas, such as the Koch snowflake, fall into the class of geometric fractals. They are simple, beautiful, and powerful. They startle us: so much diversity is captured in such simple beginnings. The power is not so much in the “beginning,” but in the process of recursion. A simple act, repeated sufficiently often, creates extraordinary, often unsuspected results. Playing with recursive operations on the computer is the key to the revelation; reading the book spoils the story when the result is before you. Create your own monsters and beauties, and the insight comes free!


Cellular Automaton Production Rule Iterate Function System Generate Fractal Sierpinski Gasket 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes on the References

  1. Edgar, G. A. Measure, Topology, and Fractal Geometry. New York: Springer-Verlag, 1990, 230 pp.Google Scholar
  2. Grünbaum, B., and G. C. Shephard. Tilings and Patterns. New York: W. H. Freeman and Company, 1987.Google Scholar
  3. Roy, R, L. Garcia, and B. Wahl. "Designer Fractal. Mathematics for the 21st Century." Santa Cruz, California: Dynamic Software, 1988.Google Scholar
  4. Lee, K., and Y. Cohen. "Fractal Attraction" St. Paul: Sandpiper Software, 1990. Lefèvre, J. Teleonomical optimization of a fractal model of the pulmonary arterial bed. J. Theor. Biol. 102: 225 - 248, 1983.Google Scholar
  5. Barnsley, M. F. Fractals Everywhere. Boston: Academic Press, Inc., 1988. Barnsley, M. F. "Desktop Fractal Design Systems." Atlanta: Iterated Systems, 1990. Barrow, G. M. Physical Chemistry, 4th Edition. New York: McGraw Hill, 1979, 832 pp.Google Scholar
  6. Peitgen, H. O., H. Jürgens, and D. Saupe. Fractals for the Classroom: Part One, Introduction to Fractals and Chaos. New York: Springer-Verlag, 1992a, 450 pp.Google Scholar
  7. Tyler, B., T. Wegner, M. Peterson, and P. Branderhorst. Fractint, 1991.Google Scholar
  8. Yamashiro, S. M., D. W. Slaaf, R. S. Reneman, G. J. Tangelder, and J. B. Bassingthwaighte. Fractal analysis of vasomotion. In: Mathematical Approaches to Cardiac Arrhythmias. Ann. N. Y. Acad. Sci. Vol.591, edited by J. Jalife, 1990, pp. 410 - 416.Google Scholar
  9. Prusinkiewicz, P., A. Lindenmayer, J. S. Hanan, F. D. Fracchia, D. R. Fowler, M. J. M. de Boer, and L. Mercer. The Algorithmic Beauty of Plants. New York: Springer-Verlag, 1990.CrossRefGoogle Scholar
  10. Prusinkiewicz, P., and J. Hanan. Lecture Notes in Biomathematics: Lindenmayer Systems, Fractals, and Plants. New York: Springer-Verlag, 1989, 120 pp.Google Scholar

Copyright information

© American Physiological Society 1994

Authors and Affiliations

  • James B. Bassingthwaighte
    • 1
  • Larry S. Liebovitch
    • 2
  • Bruce J. West
    • 3
  1. 1.Center for BioengineeringUniversity of WashingtonSeattleUSA
  2. 2.Center for Complex SystemsFlorida Atlantic UniversityBoca RatonUSA
  3. 3.Physics DepartmentUniversity of North TexasDentonUSA

Personalised recommendations