Advertisement

Animal Pain pp 41-62 | Cite as

Ascending Pathways Transmitting Nociceptive Information in Animals

  • William D. WillisJr.

Abstract

The responses of animals to noxious stimuli are comparable to those of humans and thus include both sensory and motor reactions (37). Furthermore the sensory component of the pain response is divisible into sensory-discriminative and motivational-affective aspects (61). This chapter emphasizes the ascending tracts of the spinal cord that are likely to play an important role in the sensory responses to noxious stimuli in animals, especially in common laboratory animals such as the monkey, cat, and rat.

Keywords

Dorsal Column Nociceptive Tract Spinothalamic Tract Dorsal Funiculus Dorsal Column Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angaut-Petit, D. The dorsal column system. I. Existence of long ascending postsynaptic fibres in the cat’s fasciculus gracilis. Exp. Brain Res. 22: 457–470, 1975.PubMedGoogle Scholar
  2. 2.
    Angaut-Petit, D. The dorsal column system. II. Functional properties and bulbar relay of the postsynaptic fibres of the cat’s fasciculus gracilis. Exp. Brain Res. 22: 471–493, 1975.PubMedGoogle Scholar
  3. 3.
    Antonetty, C. M., and K. E. Webster. The organization of the spinotectal projection. An experimental study in the rat. J. Comp. Neural. 163: 449–466, 1975.CrossRefGoogle Scholar
  4. 4.
    Applebaum, A. E., J. E. Beall, R. D. Foreman, and W. D. Willis. Organization and receptive fields of primate spinothalamic tract neurons. J. Neurophysiol. 38: 572–586, 1975.Google Scholar
  5. 5.
    Basbaum, A. I. Conduction of the effects of noxious stimulation by short-fiber multisynaptic systems of the spinal cord in the rat. Exp. Neurol. 40: 699–716, 1973.Google Scholar
  6. 6.
    Berkley, K. Spatial relationships between the terminations of somatic sensory and motor pathways in the rostral brainstem of cats and monkeys. I. Ascending somatic sensory inputs to lateral diencephalon. J. Comp. Neurol. 193: 283–317, 1980.Google Scholar
  7. 7.
    Boivie, J. The termination of the spinothalamic tract in the cat. An experimental study with silver impregnation methods. Exp. Brain Res. 12: 331–353, 1971.CrossRefGoogle Scholar
  8. 8.
    Boivie, J. Thalamic projections from lateral cervical nucleus in monkey. A degeneration study. Brain Res. 198: 12–36, 1980.Google Scholar
  9. 10.
    Bowsher, D. The termination of secondary somatosensory neurons within the thalamus of Macaca mulatto: an experimental degeneration study. J. Comp. Neurol. 117: 213–227, 1961.Google Scholar
  10. 11.
    Breazile, J. E., and R. L. Kitchell. Ventrolateral spinal cord afferents to the brain stem in the domestic pig. J. Comp. Neurol. 133: 363–372, 1968.CrossRefGoogle Scholar
  11. 12.
    Breazile, J. E., and R. L. Kitchell. A study of the fiber systems within the spinal cord of the domestic pig that subserve pain. J. Comp. Neurol. 133: 373–382, 1968.CrossRefGoogle Scholar
  12. 13.
    Brown, A. G. Effects of descending impulses on transmission through the spinocervical tract. J. Physiol. London 219: 103–125, 1971.Google Scholar
  13. 14.
    Brown, A. G., and D. N. Franz. Responses of spinocervical tract neurones to natural stimulation of identified cutaneous receptors. Exp. Brain Res. 7: 231–249, 1969.PubMedCrossRefGoogle Scholar
  14. 15.
    Carstens, E., and D. L. Trevino. Laminar origins of spinothalamic projections in the cat as determined by the retrograde transport of horseradish peroxidase. J. Comp. Neurol. 182: 151–166, 1978.CrossRefGoogle Scholar
  15. 16.
    Casey, K. L., B. R. Hall, and T. J. Morrow. Effect of spinal cord lesions on responses of cats to thermal pulses (Abstract). Pain 11, Suppl.: S130, 1981.Google Scholar
  16. 17.
    Cervero, F., A. Iggo, and V. Molony. Responses of spinocervical tract neurones to noxious stimulation of the skin. J. Physiol. London 267: 537–558, 1977.Google Scholar
  17. 18.
    Chung, J. M., D. R. Kenshalo, Jr., K. D. Gerhart, and W. D. Willis. Excitation of primate spinothalamic neurons by cutaneous C-fiber volleys. J. Neurophysiol. 42: 1354–1369, 1979.PubMedGoogle Scholar
  18. 19.
    Corvaja, N., I. Grofova, O. Pompeiano, and F. Walberg. The lateral reticular nucleus in the cat. I. An experimental anatomical study of its spinal and supraspinal afferent connections. Neuroscience 2: 537–553, 1977.PubMedCrossRefGoogle Scholar
  19. 20.
    Craig, A. D. Spinocervical tract cells in cat and dog, labeled by retrograde transport of horseradish peroxidase. Neurosci. Lett. 3: 173–177, 1976.Google Scholar
  20. 21.
    Craig, A. D., and H. Burton. Spinal and medullary lamina I projection to nucleus submedius in medial thalamus: a possible pain center. J. Neurophysiol. 45: 443–466, 1981.PubMedGoogle Scholar
  21. 22.
    Craig, A. D., and D. N. Tapper. Lateral cervical nucleus in the cat: functional organization and characteristics. J. Neurophysiol. 41: 1511–1534, 1978.PubMedGoogle Scholar
  22. 23.
    Ebbesson, S. O. E. Ascending axon degeneration following hemisection of the spinal cord in the Tegu lizard (Tupinambis nigropunctatus). Brain Res. 5: 178–206, 1967.PubMedCrossRefGoogle Scholar
  23. 24.
    Fields, H. L., C. H. Clanton, and S. D. Anderson. Somatosensory properties of spinoreticular neurons in the cat. Brain Res. 120: 49–66, 1977.PubMedCrossRefGoogle Scholar
  24. 25.
    Fields, H. L., G. M. Wagner, and S. D. Anderson. Some properties of spinal neurons projecting to the medial brain-stem reticular formation. Exp. Neurol. 47: 118–134, 1975.PubMedCrossRefGoogle Scholar
  25. 26.
    Foreman, R. D., R. F. Schmidt, and W. D. Willis. Effects of mechanical and chemical stimulation of fine muscle afferents upon primate spinothalamic tract cells. J. Physiol. London 286: 215–231, 1979.PubMedGoogle Scholar
  26. 27.
    Gerhart, K. D., R. P. Yezierski, G. J. Giesler, and W. D. Willis. Inhibitory receptive fields of primate spinothalamic tract cells. J. Neurophysiol. 46: 1309–1325, 1981.PubMedGoogle Scholar
  27. 28.
    Giesler, G. J., D. Menétrey, and A. I. Basbaum. Differential origins of spinothalamic tract projections to medial and lateral thalamus in the rat. J. Comp. Neurol. 184: 107–126, 1979.PubMedCrossRefGoogle Scholar
  28. 29.
    Giesler, G. J., D. Menétrey, G. Guilbaud, and J. M. Besson. Lumbar cord neurons at the origin of the spinothalamic tract in the rat. Brain Res. 118: 320–324, 1976.PubMedCrossRefGoogle Scholar
  29. 30.
    Giesler, G. J., H. R. Spiel, and W. D. Willis. Organization of spinothalamic tract axons within the rat spinal cord. J. Comp. Neurol. 195: 243–252, 1981.CrossRefGoogle Scholar
  30. 31.
    Giesler, G. J., G. Urca, J. T. Cannon, and J. C. Liebeskind. Response properties of neurons of the lateral cervical nucleus in the rat. J. Comp. Neurol. 186: 65–78, 1979.CrossRefGoogle Scholar
  31. 32.
    Giesler, G. J., R. P. Yezierski, K. D. Gerhart, and W. D. Willis. Spinothalamic tract neurons that project to medial and/or lateral thalamic nuclei: evidence for a physiologically novel population of spinal cord neurons. J. Neurophysiol. 46: 1285–1308, 1981.PubMedGoogle Scholar
  32. 33.
    Gwyn, D. G., and H. A. Waldron. A nucleus in the dorsolateral funiculus of the spinal cord of the rat. Brain Res. 10: 342–351, 1968.PubMedCrossRefGoogle Scholar
  33. 34.
    Ha, H. Cervicothalamic tract in the Rhesus monkey. Exp. Neurol. 33: 205–212, 1971.Google Scholar
  34. 35.
    Ha, H., S. T. Kitai, and F. Morin. The lateral cervical nucleus of the racoon. Exp. Neurol. 11: 441–450, 1965.PubMedCrossRefGoogle Scholar
  35. 36.
    Haber, L. H., B. D. Moore, and W. D. Willis. Electrophysiological response properties of spinoreticular neurons in the monkey. J. Comp. Neurol. 207: 75–84, 1982.CrossRefGoogle Scholar
  36. 37.
    Hardy, J. D., H. G. Wolff, and H. Goodell. Pain Sensations and Reactions. Baltimore, MD: Williams & Wilkins, 1952. [Reprinted by Hafner, New York, 1967.]Google Scholar
  37. 38.
    Hazlett, J. C., R. Dom, and G. F. Martin. Spino-bulbar, spino-thalamic and medial lemniscal connections in the American opossum, Didelphis marsupialis virginiana. J. Comp. Neurol. 146: 95–118, 1972.PubMedCrossRefGoogle Scholar
  38. 39.
    Hong, S. K., K. D. Kniffki, S. Mense, R. F. Schmidt, and M. Wendisch. Descending influences on the responses of spinocervical tract neurones to chemical stimulation of fine muscle afferents. J. Physiol. London 290: 129–140, 1979.Google Scholar
  39. 40.
    Horrobin, D. F. The lateral cervical nucleus of the cat; an electrophysiological study. Q. J. Exp. Physiol. 51 351–371, 1966.PubMedGoogle Scholar
  40. 41.
    Jones, E. G., and H. Burton. Cytoarchitecture and somatic sensory connectivity of thalamic nuclei other than the ventrobasal complex in the cat. J. Comp. Neurol. 154: 395–432, 1974.PubMedCrossRefGoogle Scholar
  41. 42.
    Karten, H. J. Ascending pathways from the spinal cord in the pigeon (Columba livia). Proc. Int. Congr. Zool., 16th, Washington, DC, 1963, p. 23.Google Scholar
  42. 43.
    Kennard, M. A. The course of ascending fibers in the spinal cord of the cat essential to the recognition of painful stimuli. J. Comp. Neurol. 100: 511–524, 1954.PubMedCrossRefGoogle Scholar
  43. 44.
    Kenshalo, D. R., Jr., R. B. Leonard, J. M. Chung, and W. D. Willis. Responses of primate spinothalamic neurons to graded and to repeated noxious heat stimuli. J. Neurophysiol. 42: 1370–1389, 1979.PubMedGoogle Scholar
  44. 45.
    Kenshalo, D. R., Jr., R. B. Leonard, J. M. Chung, and W. D. Willis. Facilitation of the responses of primate spinothalamic cells to cold and to tactile stimuli by noxious heating of the skin. Pain 12: 141–152, 1982.PubMedCrossRefGoogle Scholar
  45. 46.
    Kerr, F. W. L. The ventral spinothalamic tract and other ascending systems of the ventral funiculus of the spinal cord. J. Comp. Neural. 159: 335–356, 1975.CrossRefGoogle Scholar
  46. 47.
    Kerr, F. W. L., and H. H. Lippman. The primate spinothalamic tract as demonstrated by anterolateral cordotomy and commissural myelotomy. Adv. Neurol. 4: 147–156, 1974.Google Scholar
  47. 48.
    Kevetter, G. A., L. H. Haber, R. P. Yezierski, J. M. Chung, R. F. Martin, and W. D. Willis. Cells of origin of the spinoreticular tract in the monkey. J. Comp. Neurol. 207: 61–74, 1982.CrossRefGoogle Scholar
  48. 49.
    Kevetter, G. A., and W. D. Willis. Spinothalamic cells in the rat lumbar cord with collaterals to the medullary reticular formation. Brain Res. 238: 181–185, 1982.PubMedCrossRefGoogle Scholar
  49. 50.
    Kitai, S. T., H. Ha, and F. Morin. Lateral cervical nucleus of the dog: anatomical and microelectrode studies. Am. J. Physiol. 209: 307–312, 1965.PubMedGoogle Scholar
  50. 51.
    Lund, R. D., and K. E. Webster. Thalamic afferents from the spinal cord and trigeminal nuclei. An experimental anatomical study in the rat. J. Comp. Neurol. 130: 313–328, 1967.PubMedCrossRefGoogle Scholar
  51. 52.
    Maunz, R. A., N. G. Pitts, and B. W. Peterson. Cat spinoreticular neurons: locations, responses and changes in responses during repetitive stimulation. Brain Res. 148: 365–379, 1978.PubMedCrossRefGoogle Scholar
  52. 53.
    Mehler, W. R. Some neurological species differences-a posteriori. Ann. NY Acad. Sci. 167: 424–468, 1969.CrossRefGoogle Scholar
  53. 54.
    Mehler, W. R., M. E. Feferman, and W. J. H. Nauta. Ascending axon degeneration following anterolateral cordotomy. An experimental study in the monkey. Brain 83: 718–751, 1960.PubMedCrossRefGoogle Scholar
  54. 55.
    Menétrey, D., A. Chaouch, and J. M. Besson. Location and properties of dorsal horn neurons at origin of spinoreticular tract in lumbar enlargement of the rat. J. Neurophysiol. 44: 862–877, 1980.PubMedGoogle Scholar
  55. 56.
    Milne, R. J., R. D. Foreman, G. J. Giesler, and W. D. Willis. Convergence of cutaneous and pelvic visceral nociceptive inputs onto primate spinothalamic neurons. Pain 11: 163–183, 1981.PubMedCrossRefGoogle Scholar
  56. 57.
    Milne, R. J., R. D. Foreman, and W. D. Willis. Responses of primate spinothalamic neurons located in the sacral intermediomedial gray (Stilling’s nucleus) to proprioceptive input from the tail. Brain Res. 234: 227–236, 1982.PubMedCrossRefGoogle Scholar
  57. 58.
    Mizuno, N., K. Nakano, M. Imaizumi, and M. Okamoto. The lateral cervical nucleus of the Japanese monkey (Macaca fuscata). J. Comp. Neurol. 129: 375–384, 1967.PubMedCrossRefGoogle Scholar
  58. 59.
    Morin, F. A new spinal pathway for cutaneous impulses. Am. J. Physiol. 183: 245–252, 1955.Google Scholar
  59. 60.
    Morin, F., H. G. Schwartz, and J. L. O’Leary. Experimental study of the spinothalamic and related tracts. Acta Psychiatr. Neurol. 26: 371–396, 1951.Google Scholar
  60. 61.
    Price, D. D., and R. Dubner. Neurons that subserve the sensory discriminative aspects of pain. Pain 3: 307–338, 1977.PubMedCrossRefGoogle Scholar
  61. 62.
    Price, D. D., R. L. Hayes, M. Ruda, and R. Dubner. Spatial and temporal transformation of input to spinothalamic tract neurons and their relations to somatic sensations. J. Neurophysiol. 41: 933–947, 1978.PubMedGoogle Scholar
  62. 63.
    Rao, G. S., J. E. Breazile, and R. L. Kitchell. Distribution and termination of spinoreticular afferents in the brain stem of sheep. J. Comp. Neurol. 137: 185–196, 1969.PubMedCrossRefGoogle Scholar
  63. 64.
    Rexed, B. The cytoarchitectonic organization of the spinal cord in the cat. J. Comp. Neurol. 96: 415–495, 1952.CrossRefGoogle Scholar
  64. 65.
    Rexed, B., and A. Brodal. The nucleus cervicalis lateralis. A spino-cerebellar relay nucleus. J. Neurophysiol. 14: 399–407, 1951.PubMedGoogle Scholar
  65. 66.
    Rustioni, A. Non-primary afferents to the nucleus gracilis from the lumbar cord of the cat. Brain Res. 51: 81–95, 1973.PubMedCrossRefGoogle Scholar
  66. 67.
    Rustioni, A. Non-primary afferents to the cuneate nucleus in the brachial dorsal funiculus of the cat. Brain Res. 75: 247–259, 1974.PubMedCrossRefGoogle Scholar
  67. 68.
    Rustioni, A., and A. B. Kaufman. Identification of cells of origin of non-primary afferents to the dorsal column nuclei of the cat. Exp. Brain Res. 27: 1–14, 1977.PubMedCrossRefGoogle Scholar
  68. 69.
    Trevino, D. L. The origin and projections of a spinal nociceptive and thermoreceptive pathway. In: Sensory Functions of the Skin in Primates, With Special Reference to Man, edited by Y. Zotterman. New York: Pergamon, 1976, p. 367–376.Google Scholar
  69. 70.
    Trevino, D. L., and E. Carstens. Confirmation of the location of spinothalamic neurons in the cat and monkey by the retrograde transport of horseradish peroxidase. Brain Res. 98: 177–182, 1975.PubMedCrossRefGoogle Scholar
  70. 71.
    Trevino, D. L., R. A. Maunz, R. N. Bryan, and W. D. Willis. Location of cells of origin of the spinothalamic tract in the lumbar enlargement of cat. Exp. Neurol. 34: 64–77, 1972.PubMedCrossRefGoogle Scholar
  71. 72.
    Uddenberg, N. Functional organization of long, second-order afferents in the dorsal funiculus. Exp. Brain Res. 4: 377–382, 1968.Google Scholar
  72. 73.
    Vierck, C. J., D. M. Hamilton, and J. I. Thornby. Pain reactivity of monkeys after lesions to the dorsal and lateral columns of the spinal cord. Exp. Brain Res. 13: 140–158, 1971.PubMedCrossRefGoogle Scholar
  73. 74.
    Vierck, C. J., and M. M. Luck. Loss and recovery of reactivity to noxious stimuli in monkeys with primary spinothalamic cordotomies, followed by secondary and tertiary lesions of other cord sectors. Brain 102: 233–248, 1979.PubMedCrossRefGoogle Scholar
  74. 75.
    White, J. C., and W. H. Sweet. Pain and the Neurosurgeon. Springfield, IL: Thomas, 1969.Google Scholar
  75. 76.
    Willis, W. D. Ascending pathways from the dorsal horn. In: Spinal Cord Sensation, edited by A. G. Brown and M. Réthelyi. Edinburgh: Scottish Academic, 1981, p. 169–178.Google Scholar
  76. 77.
    Willis, W. D. The spinothalamic tract. In: The Clinical Neurosciences, edited by R. H. Rosenberg. New York: Churchill Livingstone, sect. V, in press.Google Scholar
  77. 78.
    Willis, W. D., and R. E. Coggeshall. Sensory Mechanisms of the Spinal Cord. New York: Plenum, 1978.CrossRefGoogle Scholar
  78. 79.
    Willis, W. D., D. R. Kenshalo, Jr., and R. B. Leonard. The cells of origin of the primate spinothalamic tract. J. Comp. Neurol. 188: 543–574, 1979.PubMedCrossRefGoogle Scholar
  79. 80.
    Willis, W. D., D. L. Trevino, J. D. Coulter, and R. A. Maunz. Responses of primate spinothalamic tract neurons to natural stimulation of hindlimb. J. Neurophysiol. 37: 358–372, 1974.PubMedGoogle Scholar
  80. 81.
    Yoss, R. E. Studies of the spinal cord. Pt. 3. Pathways for deep pain within the spinal cord and brain. Neurology 3: 163–175, 1953.CrossRefGoogle Scholar

Copyright information

© American Physiological Society 1983

Authors and Affiliations

  • William D. WillisJr.
    • 1
  1. 1.Marine Biomedical Institute, Department of Physiology and Biophysics and Department of AnatomyUniversity of Texas Medical BranchGalvestonUSA

Personalised recommendations