The PPAR System in Diabetes

  • Jean Claude Ansquer
  • Christelle Foucher
Chapter
Part of the Contemporary Diabetes book series (CDI)

Abstract

Peroxisome proliferator-activated receptors (PPARs), with three existing isoforms (PPAR α, PPAR β/δ, and PPAR γ), belong to the nuclear receptors subfamily. The PPAR machinery involves the binding of natural (fatty acids and prostaglandins), synthetic (mainly fibrates for PPAR α and thiazolidinediones for PPAR γ and new dual and pan-PPAR agonists), and selective PPAR modulators, coactivators, and corepressors with enzymatic activities and various metabolic transformations turning PPARs toward activation or to degradation. Among PPAR activators in clinical development for type 1 or type 2 diabetes and dyslipidemia, some have been discontinued for safety reasons or for no additional benefit over existing drugs. Knowing the pleiotropic effects of PPAR agonists, search for new natural PPAR ligands and clinical development of new target indications represent the main future of this class of drugs.

Keywords

Serine Lysine Tamoxifen Androgen Estradiol 

References

  1. 1.
    Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev. 1999;20:649–88.PubMedCrossRefGoogle Scholar
  2. 2.
    Sher T, Yi HF, McBride OW, Gonzalez FJ. cDNA cloning, chromosomal mapping and functional characterization of the human peroxisome proliferator activated receptor. Biochemistry. 1993;32:5598–604.PubMedCrossRefGoogle Scholar
  3. 3.
    Lazar MA, Chin WW. Nuclear thyroid hormone receptors. J Clin Invest. 1990;86:1777–82.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Mattei MG, Rivière M, Krust A, Ingvarsson S, Vennström B, Islam MQ, et al. Chromosomal assignment of retinoic acid receptor (RAR) genes in the human, mouse, and rat genomes. Genomics. 1991; 10:1061–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Greene ME, Blumberg B, McBride OW, Yi HF, Kronquist K, Kwan K, Hsieh L, Greene G, Nimer SD. Isolation of the human peroxisome proliferator activated receptor gamma cDNA: expression in hematopoietic cells and chromosomal mapping. Gene Expr. 1995;4:281–99.PubMedGoogle Scholar
  6. 6.
    Vidal-Puig AJ, Considine RV, Jimenez-Linan M, Werman A, Pories WJ, Caro JF, Flier JS. Peroxisome proliferator-activated receptor gene expression in human tissues. J Clin Invest. 1997;99:2416–22.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Gouda HN, Sagoo GS, Harding AH, Yates J, Sandhu MS, Higgins JP. The association between the peroxisome proliferator-activated receptor-gamma2 (PPARG2) Pro12Ala gene variant and type 2 diabetes mellitus: a HuGE review and meta-analysis. Am J Epidemiol. 2010;171:645–55.PubMedCrossRefGoogle Scholar
  8. 8.
    Schmidt A, Endo N, Rutledge SJ, Vogel R, Shinar D, Rodan GA. Identification of a new member of the steroid hormone receptor superfamily that is activated by a peroxisome proliferator and fatty acids. Mol Endocrinol. 1992;6:1634–41.PubMedCrossRefGoogle Scholar
  9. 9.
    Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature. 1990;347:645–50.PubMedCrossRefGoogle Scholar
  10. 10.
    Youssef J, Badr M. Role of peroxisome proliferator-activated receptors in inflammation control. J Biomed Biotechnol. 2004;3:156–66.CrossRefGoogle Scholar
  11. 11.
    Hummasti S, Tontonoz P. The peroxisome proliferator-activated receptor N-terminal domain controls isotype-selective gene expression and adipogenesis. Mol Endocrinol. 2006;20:1261–75.PubMedCrossRefGoogle Scholar
  12. 12.
    Devchand P, Keller H, Peters H, Vasquze M, Gonzalez F, Wahli W. The PPAR alpha-leukotriene B4 pathway to inflammation control. Nature. 1996;384:39–43.PubMedCrossRefGoogle Scholar
  13. 13.
    Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, Koble CS. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors α and γ. Proc Natl Acad Sci USA. 1997;94:4318–23.PubMedCrossRefGoogle Scholar
  14. 14.
    Forman BM, Chen J, Evans RM. Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors α and δ. Proc Natl Acad Sci USA. 1997;94:4312–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Willson TM, Brown PJ, Sternbach DD, Henke BR. The PPARs: from orphan receptors to drug discovery. J Med Chem. 2000;43:527–50.PubMedCrossRefGoogle Scholar
  16. 16.
    Chakravarthy MV, Lodhi IJ, Yin L, Malapaka RV, Xu HE, Turk J, Semenkovich CF. Identification of a physiologically relevant endogenous ligand for PPAR α in liver. Cell. 2009;138:476–88.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Lee JM, Lee YK, Mamrosh JL, Busby SA, Griffin PR, Pathak MC, et al. A nuclear-receptor-dependent phosphatidylcholine pathway with antidiabetic effects. Nature. 2011;474:506–12.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Mukherjee R, Jow L, Noonan D, McDonnell DP. Human and rat peroxisome proliferator activated receptors (PPARs) demonstrate similar tissue distribution but different responsiveness to PPAR activators. J Steroid Biochem Mol Biol. 1994;51:157–66.PubMedCrossRefGoogle Scholar
  19. 19.
    Schoonjans K, Staels B, Auwerx J. The peroxisome proliferator activated receptors (PPARs) and their effects on lipid metabolism and adipocyte differentiation. Biochim Biophys Acta. 1996;1302:93–109.PubMedCrossRefGoogle Scholar
  20. 20.
    Nissen SE, Nicholls SJ, Wolski K, Howey DC, McErlean E, Wang MD, et al. Effects of a potent and selective PPAR-alpha agonist in patients with atherogenic dyslipidemia or hypercholesterolemia: two randomized controlled trials. JAMA. 2007;297:1362–73.PubMedCrossRefGoogle Scholar
  21. 21.
    Harris PK, Kletzien RF. Localization of a pioglitazone response element in the adipocyte fatty acid-binding protein gene. Mol Pharmacol. 1994;45: 439–45.PubMedGoogle Scholar
  22. 22.
    Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem. 1995;270:12953–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Matsuzawa Y, Funahashi T, Nakamura T. Molecular mechanism of metabolic syndrome X: contribution of adipocytokines adipocytes-derived bioactive substances. Ann N Y Acad Sci. 1999;892:146–54.PubMedCrossRefGoogle Scholar
  24. 24.
    Wagner JA, Wright EC, Ennis MM, Prince M, Kochan J, Nunez DJ, et al. Utility of adiponectin as a biomarker predictive of glycemic efficacy is demonstrated by collaborative pooling of data from clinical trials conducted by multiple sponsors. Clin Pharmacol Ther. 2009;86:619–25.PubMedCrossRefGoogle Scholar
  25. 25.
    Berger J, Leibowitz MD, Doebber TW, Elbrecht A, Zhang B, Zhou G, et al. Novel peroxisome proliferator-activated receptor (PPAR) γ and PPAR δ ligands produce distinct biological effects. J Biol Chem. 1999;274:6718–25.PubMedCrossRefGoogle Scholar
  26. 26.
    Oliver WR, Shenk JL, Snaith MR, Russell CS, Plunket KD, Bodkin NL, et al. A selective peroxisome proliferator-activated receptor δ agonist promotes reverse cholesterol transport. Proc Natl Acad Sci USA. 2001;98:5306–11.PubMedCrossRefGoogle Scholar
  27. 27.
    Rosenfeld MG, Lunyak VV, Glass CK. Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev. 2006;20:1405–28.PubMedCrossRefGoogle Scholar
  28. 28.
    Jiang C, Ting AT, Seed B. PPAR-γ agonists inhibit production of monocyte inflammatory cytokines. Nature. 1998;391:82–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Staels B, Koenig W, Habib A, Merval R, Lebret M, Torra IP, et al. Activation of human aortic smooth-muscle cells is inhibited by PPAR alpha but not by PPAR gamma activators. Nature. 1998;393:790–3.PubMedCrossRefGoogle Scholar
  30. 30.
    Delerive P, De Bosscher K, Besnard S, Vanden Berghe W, Peters JM, Gonzalez FJ, et al. Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappa B and AP-1. J Biol Chem. 1999;274: 32048–54.PubMedCrossRefGoogle Scholar
  31. 31.
    Lee C-H, Chawla A, Urbiztondo N, Liao D, Boisvert WA, Evans RM. Transcriptional repression of atherogenic inflammation: modulation by PPAR delta. Science. 2003;302:453–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Rival Y, Benéteau N, Taillandier T, Pezet M, Dupont-Passelaigue E, Patoiseau JF, et al. PPARalpha and PPARdelta activators inhibit cytokine-induced nuclear translocation of NF-kappaB and expression of VCAM-1 in EAhy926 endothelial cells. Eur J Pharmacol. 2002;435:143–51.PubMedCrossRefGoogle Scholar
  33. 33.
    Fernandez-Marcos PJ, Auwerx J. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr. 2011;93:884S–90.PubMedCrossRefGoogle Scholar
  34. 34.
    Yamamoto H, Williams EG, Mouchiroud L, Cantó C, Fan W, Downes M, et al. NCoR1 is a conserved physiological modulator of muscle mass and oxidative function. Cell. 2011;147:827–39.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Li P, Fan W, Xu J, Lu M, Yamamoto H, Auwerx J. Adipocyte NCoR knockout decreases PPARγ phosphorylation and enhances PPARγ activity and insulin sensitivity. Cell. 2011;147:815–26.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Reilly SM, Bhargava P, Liu S, Gangl MR, Gorgun C, Nofsinger RR, et al. Nuclear receptor corepressor SMRT regulates mitochondrial oxidative metabolism and mediates aging-related metabolic deterioration. Cell Metab. 2010;12:643–53.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Hu E, Kim JB, Sarraf P, Spiegelman BM. Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPAR gamma. Science. 1996; 274:2100–3.PubMedCrossRefGoogle Scholar
  38. 38.
    Juge-Aubry CE, Hammar E, Siegrist-Kaiser C, Pernin A, Takeshita A, Chin WW, et al. Regulation of the transcriptional activity of the peroxisome proliferator-activated receptor alpha by phosphorylation of a ligand-independent trans-activating domain. J Biol Chem. 1999;274:10505–10.PubMedCrossRefGoogle Scholar
  39. 39.
    Martin G, Duez H, Blanquart C, Berezowski V, Poulain P, Fruchart JC, et al. Statin-induced inhibition of the Rho-signaling pathway activates PPARalpha and induces HDL apoA-I. J Clin Invest. 2001;107:1423–32.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Inoue I, Itoh F, Aoyagi S, Tazawa S, Kusama H, Akahane M, Mastunaga T, et al. Fibrate and statin synergistically increase the transcriptional activities of PPARα/RXRα and decrease the transactivation of NFκB. Biochem Biophys Res Commun. 2002;290: 131–9.Google Scholar
  41. 41.
    Burns KA, Vanden Heuvel JP. Modulation of PPAR activity via phosphorylation. Biochim Biophys Acta. 2007;1771:952–60.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Choi JH, Banks AS, Estall JL, Kajimura S, Bostrom P, Laznik D, et al. Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARγ by Cdk5. Nature. 2010;466:451–7.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Choi JH, Banks AS, Kamenecka TM, Busby SA, Chalmers MJ, Kumar N, et al. Antidiabetic actions of a non-agonist PPARγ ligand blocking Cdk5-mediated phosphorylation. Nature. 2011;477:477–81.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Hauser S, Adelmant G, Sarraf P, Wright HM, Mueller E, Spiegelman BM. Degradation of the peroxisome proliferator-activated receptor gamma is linked to ligand-dependent activation. J Biol Chem. 2000;275:18527–33.PubMedCrossRefGoogle Scholar
  45. 45.
    Blanquart C, Barbier O, Fruchart JC, Staels B, Glineur C. Peroxisome proliferator-activated receptor alpha (PPARalpha) turnover by the ubiquitin-proteasome system controls the ligand-induced expression level of its target genes. J Biol Chem. 2002;277:37254–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Genini D, Catapano CV. Block of nuclear receptor ubiquitination. A mechanism of ligand-dependent control of peroxisome proliferator-activated receptor δ activity. J Biol Chem. 2007;282:11776–85.PubMedCrossRefGoogle Scholar
  47. 47.
    Pascual G, Fong AL, Ogawa S, Gamliel A, Li AC, Perissi V, et al. A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature. 2005;437:759–63.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Dutchak PA, Katafuchi T, Bookout AL, Choi JL, Yu RT, Mangelsdorf DJ, Kliewer SA. Fibroblast growth factor-21 regulates PPAR γ activity and the antidiabetic actions of thiazolidinediones. Cell. 2012;148:556–67.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Pourcet B, Pineda-Torra I, Derudas B, Staels B, Glineur C. SUMOylation of human peroxisome proliferator-activated receptor alpha inhibits its trans-activity through the recruitment of the nuclear corepressor NCoR. J Biol Chem. 2010;285:5983–92.PubMedCrossRefGoogle Scholar
  50. 50.
    Wadosky KM, Willis MS. The story so far: post translational regulation of peroxisome proliferator-activated receptors by ubiquitination and SUMOylation. Am J Physiol Heart Circ Physiol. 2011;302:H515–26.PubMedCrossRefGoogle Scholar
  51. 51.
    Wang C, Powell MJ, Popov VM, Pestell RG. Acetylation in nuclear receptor signaling and the role of sirtuins. Mol Endocrinol. 2008;22:539–45.PubMedCrossRefGoogle Scholar
  52. 52.
    Lerin C, Rodgers JT, Kalume DE, Kim SH, Pandey A, Puigserver P. GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha. Cell Metab. 2006;3: 429–38.PubMedCrossRefGoogle Scholar
  53. 53.
    Finkel T, Deng CX, Mostoslavsy P. Recent progress in the biology and physiology of sirtuins. Nature. 2009;460:587–91.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Camp HS, Li O, Wise SC, Hong YH, Frankowski CL, Shen X, et al. Differential activation of peroxisome proliferator-activated receptor-[gamma] by troglitazone and rosiglitazone. Diabetes. 2000;49: 539–47.PubMedCrossRefGoogle Scholar
  55. 55.
    Olefsky JM. Treatment of insulin resistance with peroxisome proliferator-activated receptor gamma agonists. J Clin Invest. 2000;106:467–72.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Shang Y, Hu X, DiRenzo J, Lazar MA, Brow M. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell. 2000;103:843–52.PubMedCrossRefGoogle Scholar
  57. 57.
    Issa LL, Leong GM, Sutherland RL, Eisman JA. Vitamin D analogue-specific recruitment of vitamin D receptor coactivators. J Bone Miner Res. 2002;17: 879–90.PubMedCrossRefGoogle Scholar
  58. 58.
    Higgins LS, Mantzoros CS. The development of INT131 as a selective PPAR γ modulator: approach to a safer insulin sensitizer. PPAR Res. 2008. doi: 10.1155/2009/936906.
  59. 59.
    Duez H, Lefebvre B, Poulain P, Pineda Torra I, Percevault F, Luc G, et al. Regulation of human ApoA-I by gemfibrozil and fenofibrate through selective peroxisome proliferator-activated receptor α modulation. Arterioscler Thromb Vasc Biol. 2005;25:1–7.CrossRefGoogle Scholar
  60. 60.
    Pirat C, Farce A, Lebegue N, Renault N, Furman C, Millet R, et al. Targeting peroxisome proliferator-activated receptors (PPARs): development of modulators. J Med Chem. 2012 Jan 19. doi: 10.1021/jm101360s.
  61. 61.
    McHutchison J, Goodman Z, Patel K, Makhlouf H, Rodriguez-Torres M, Shiffman M. Farglitazar lacks antifibrotic activity in patients with chronic hepatitis C infection. Gastroenterology. 2010;138:1365–73.PubMedCrossRefGoogle Scholar
  62. 62.
    Guan Y, Breyer MD. Peroxisome proliferator-activated receptors (PPARs): novel therapeutic target in renal disease. Kidney Int. 2001;60:14–30.PubMedCrossRefGoogle Scholar
  63. 63.
    Aleshin S, Grabeklis S, Hanck T, Sergeeva M, Reiser G. Peroxisome proliferator-activated receptor (PPAR)-gamma positively controls and PPARalpha negatively controls cyclooxygenase-2 expression in rat brain astrocytes through a convergence on PPARbeta/delta via mutual control of PPAR expression levels. Mol Pharmacol. 2009;76:414–24.PubMedCrossRefGoogle Scholar
  64. 64.
    Ravnskjaer K, Frigerio F, Boergesen M, Nielsen T, Maechler P, Mandrup S. PPAR delta is a fatty acid sensor that enhances mitochondrial oxidation in insulin-secreting cells and protects against fatty acid-induced dysfunction. J Lipid Res. 2010;51:1370–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Ravnskjaer K, Boergesen M, Rubi B, Larsen JK, Nielsen T, Fridriksson J, et al. Peroxisome proliferator-activated receptor α (PPARα) potentiates, whereas PPAR γ attenuates, glucose-stimulated insulin secretion in pancreatic β cells. Endocrinology. 2005;146:3266–76.PubMedCrossRefGoogle Scholar
  66. 66.
    Liu S, Lui Q, Li L, Huan Y, Sun S, Shen Z. Long-term fenofibrate treatment impaired glucose-stimulated insulin secretion and up-regulated pancreatic NF-kappa B and iNOS expression in monosodium glutamate-induced obese rats: is it a latent disadvantage? J Transl Med. 2011;9:176.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Yajima K, Hirose H, Fujita H, Seto Y, Fujita H, Ukeda K, et al. Combination therapy with PPAR γ and PPAR α agonists increases glucose-stimulated insulin secretion in db/db mice. Am J Physiol Endocrinol Metab. 2003;284:E966–71.PubMedGoogle Scholar
  68. 68.
    Cohen G, Riahi Y, Shamni O, Guichardant M, Chatgilialoglu C, Ferreri C, et al. Role of lipid peroxidation and PPAR-δ in amplifying glucose-stimulated insulin secretion. Diabetes. 2011;60: 2830–42.PubMedCrossRefGoogle Scholar
  69. 69.
    Kono T, Ahn G, Moss DR, Gann L, Zarain-Herzberg A, Nishiki Y, et al. PPAR γ activation restores pancreatic islet SERCA2 levels and prevents β-cell dysfunction under conditions of hyperglycaemic and cytokine stress. Mol Endocrinol. 2012;26:257–71.PubMedCrossRefGoogle Scholar
  70. 70.
    Engelen W, Manuel-y-Keenoy B, Vertommen J, De Leeuw I, Van Gaal L. Effects of micronized fenofibrate and vitamin E on in vitro oxidation of lipoproteins in patients with type 1 diabetes mellitus. Diabetes Metab. 2005;31:197–204.PubMedCrossRefGoogle Scholar
  71. 71.
    A trial in adults with type 1 diabetes mellitus evaluating the effects of fenofibrate versus placebo on macular thickness and volume (FAME 1 EYE). Available from: http://clinicaltrials.gov/ct2/show/NCT01320345. Last Accessed 8 Mar 2012.
  72. 72.
    Winocour PH, Durrington PN, Bhatagnar D, Ishola M, Arrol S, Lahor BC, Anderson DC. Double-blind placebo-controlled study of the effects of bezafibrate on blood lipids, lipoproteins and fibrinogen in hypercholipidaemic type 1 diabetes. Diabet Med. 1990;7:736–43.PubMedCrossRefGoogle Scholar
  73. 73.
    Winocour PH, Durrington PN, Bhatagnar D, Ishola M, Mackness M, Arrol S, Anderson DC. The effect of bezafibrate on very low density lipoprotein (VLDL), intermediate density lipoprotein (IDL), and low density lipoprotein (LDL) composition in type 1 diabetes associated with hypercholesterolaemia or combined hyperlipidaemia. Atherosclerosis. 1992;93:83–94.PubMedCrossRefGoogle Scholar
  74. 74.
    Tenenbaum A, Motro M, Fisman EZ. Dual and pan-peroxisome proliferator-activated receptors (PPAR) co-agonism: the bezafibrate lessons. Cardiovasc Diabetol. 2005;4:14. doi: 10.1186/475-2840-4-14.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Strowig SM, Raskin P. The effect of rosiglitazone on overweight subjects with type 1 diabetes. Diabetes Care. 2005;28:1562–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Stone ML, Walker JL, Chisholm D, Craig ME, Donaghue KC, Crock P, et al. The addition of rosiglitazone to insulin in adolescents with type 1 diabetes and poor glycaemic control: a randomized-controlled trial. Pediatr Diabetes. 2008;9(part 1):326–34.PubMedCrossRefGoogle Scholar
  77. 77.
    Bhat R, Bhansali A, Bhadada S, Sialy R. Effect of pioglitazone therapy in lean type 1 diabetes mellitus. Diabetes Res Clin Pract. 2007;78:349–54.PubMedCrossRefGoogle Scholar
  78. 78.
    Shimada A, Shigihara T, Okubo Y, Katsuki T, Yamada Y, Oikawa Y. Pioglitazone may accelerate disease course of slowly progressive type 1 diabetes. Diabetes Metab Res Rev. 2011;27:951–3.PubMedCrossRefGoogle Scholar
  79. 79.
    Buchanan TA, Xiang AH, Peters RK, Kjos SL, Marroquin A, Goico J, et al. Preservation of pancreatic beta-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk Hispanic women. Diabetes. 2002;51:2796–803.PubMedCrossRefGoogle Scholar
  80. 80.
    Gerstein HC, Yusuf S, Bosch J, Pogue J, Sheridan P, Dinccag N, et al. Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose. Lancet. 2006;368:1096–105.PubMedCrossRefGoogle Scholar
  81. 81.
    DeFronzo RA, Tripathy D, Schwenke DC, Banerji M, Bray GA, Buchanan TA. Pioglitazone for diabetes prevention in impaired glucose tolerance. N Engl J Med. 2011;364:1104–15.PubMedCrossRefGoogle Scholar
  82. 82.
    Dormandy JA, Charbonnel B, Eckland DJ, Erdmann E, Massi-Benedetti M, Moules IK, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial in macroVascular Events): a randomised controlled trial. Lancet. 2005;366:1279–89.PubMedCrossRefGoogle Scholar
  83. 83.
    Derosa G. Efficacy and tolerability of pioglitazone in patients with type 2 diabetes mellitus: comparison with other oral antihyperglycaemic agents. Drugs. 2010;70:1945–61.PubMedCrossRefGoogle Scholar
  84. 84.
    Krentz AJ. Rosiglitazone: trials, tribulations and termination. Drugs. 2011;71:123–30.PubMedCrossRefGoogle Scholar
  85. 85.
    Friedland SN, Leong A, Filion KB, Genest J, Lega IC, Mottillo S, et al. The cardiovascular effects of peroxisome proliferator-activated receptor agonists. Am J Med. 2012;125:126–33.PubMedCrossRefGoogle Scholar
  86. 86.
    Nissen SE, Wolski K, Topol EJ. Effect of muraglitazar on death and major adverse cardiovascular events in patients with type 2 diabetes mellitus. JAMA. 2005;294:2581–6.PubMedCrossRefGoogle Scholar
  87. 87.
    FDA guidance for the industry. Diabetes mellitus. Developing drugs and therapeutic biologics for treatment and prevention. www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM071624.pdf. Accessed 17 Feb 2012.
  88. 88.
    FDA guidance for industry. Diabetes Mellitus. Evaluating cardiovascular risk in new antidiabetic therapies to treat type 2 Diabetes. www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM071627.pdf. Accessed 17 Feb 2012.
  89. 89.
    The TIDE Trial Investigators. Design, history and results of the thiazolidinedione intervention with vitamin D evaluation (TIDE) randomised controlled trial. Diabetologia. 2012;55:36–45.CrossRefGoogle Scholar
  90. 90.
    A study with aleglitazar in patients with a recent acute coronary syndrome and type 2 diabetes. Available from: http://clinicaltrials.gov/ct2/show/NCT01042769. Last Accessed 8 Mar 2012.
  91. 91.
    Henry RR, Lincoff AM, Mudaliar S, Rabbia M, Chognot C, Herz M. Effect of the dual peroxisome proliferator-activated receptor-alpha/gamma agonist aleglitazar on risk of cardiovascular disease in patients with type 2 diabetes (SYNCHRONY): a phase II, randomised, dose-ranging study. Lancet. 2009;374:126–35.PubMedCrossRefGoogle Scholar
  92. 92.
    Herz M, Gaspari F, Perico N, Viberti G, Urbanowska T, Rabbia M, et al. Effects of high dose aleglitazar on renal function in patients with type 2 diabetes. Int J Cardiol. 2011;151(2):136–42.PubMedCrossRefGoogle Scholar
  93. 93.
    Efficacy and safety of CKD-501 versus pioglitazone when added to metformin. Available from: http://clinicaltrials.gov/ct2/show/NCT01106131. Last Accessed 8 Mar 2012.
  94. 94.
    A clinical trial to evaluate the safety and efficacy of ZYH7 compared with fenofibrate in patients with dyslipidemia. Available from: http://clinicaltrials.gov/ct2/results?term=01539616. Last Accessed 1 Mar 2012.
  95. 95.
    Henriksen K, Byrjalsen I, Qvist P, Beck-Nielsen H, Hansen G, Riis BJ. Efficacy and safety of the PPARγ partial agonist balaglitazone compared with pioglitazone and placebo: a phase III, randomized, parallel-group study in patients with type 2 diabetes on stable insulin therapy. Diabetes Metab Res Rev. 2011;27:392–401.PubMedCrossRefGoogle Scholar
  96. 96.
    A placebo-controlled safety and efficacy study of INT131 besylate in type 2 diabetes with an active comparator. Available from: http://clinicaltrials.gov/ct2/results?term=00631007. Last Accessed 1 Mar 2012.
  97. 97.
    Risérus U, Sprecher D, Johnson T, Olson E, Hirschberg S, Liu A, et al. Activation of peroxisome proliferator-activated receptor (PPAR)delta promotes reversal of multiple metabolic abnormalities, reduces oxidative stress, and increases fatty acid oxidation in moderately obese men. Diabetes. 2008;57:332–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Ooi EM, Watts GF, Sprecher DL, Chan DC, Barrett PH. Mechanism of action of a peroxisome proliferator-activated receptor (PPAR)-delta agonist on lipoprotein metabolism in dyslipidemic subjects with central obesity. J Clin Endocrinol Metab. 2011;96:E1568–76.PubMedCrossRefGoogle Scholar
  99. 99.
    Bays HE, Schwartz S, Littlejohn T 3rd, Kerzner B, Krauss RM, Karpf DB. MBX-8025, a novel peroxisome proliferator receptor-delta agonist: lipid and other metabolic effects in dyslipidemic overweight patients treated with and without atorvastatin. J Clin Endocrinol Metab. 2011;96:2889–97.Google Scholar
  100. 100.
    Cariou B, Zaïr Y, Staels B, Bruckert E. Effects of the new dual PPAR α/δ agonist GFT505 on lipid and glucose homeostasis in abdominally obese patients with combined dyslipidemia or impaired glucose metabolism. Diabetologia. 2011;34:2008–14.Google Scholar
  101. 101.
    A multicenter, randomized, double-blind, double-dummy, parallel-group, placebo-controlled, Study to Evaluate Efficacy, Safety and Tolerability of Oral GW677954 Capsules (2.5, 5, 10, 15 And 20 mg Once A Day) as a Monotherapy (Diet and/or exercise treated) or as an Add-On to Metformin for 16 Weeks Duration in Subjects with Type 2 Diabetes Mellitus. Study No.: ADG20001, available on: gsk-clinicalstudyregister.com/files/20462.pdf - 2010-.Google Scholar
  102. 102.
    Sanwald-Ducray P, Liogier D’ardhuy X, Jamois C, Banken L. Pharmacokinetics, pharmacodynamics, and tolerability of aleglitazar in patients with type 2 diabetes: results from a randomized, placebo-controlled clinical study. Clin Pharmacol Ther. 2010;88:197–203.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jean Claude Ansquer
    • 1
  • Christelle Foucher
    • 1
  1. 1.ClinSciencesDijonFrance

Personalised recommendations