Skip to main content

Model-Based Variation-Aware Integrated Circuit Design

  • Chapter
Surrogate-Based Modeling and Optimization

Abstract

Modern integrated circuit designers must deal with complex design and simulation problems while coping with large device to device parametric variations and often imperfect information. This chapter presents surrogate model-based methods to generate circuit performance models for design, device models, and high-speed input-output (IO) buffer macromodels. Circuit performance models are built with design parameters and parametric variations, and they can be used for fast and systematic design space exploration and yield analysis. Surrogate models of the main device characteristics are generated in order to assess the effects of variability in analog circuits. The variation-aware IO buffer macromodel integrates surrogate modeling and a physically based model structure. The new IO macromodel provides both good accuracy and scalability for signal integrity analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gorissen, D., Turck, F.D., Dhaene, T.: Evolutionary model type selection for global surrogate modeling. J. Mach. Learn. Res. 10(1), 2039–2078 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Eldred, M.S., Dunlavy, D.M.: Formulations for surrogate-based optimization with data fit, multifidelity, and reduced-order models. In: 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Portsmouth, Virginia (2006). AIAA-2006-7117

    Google Scholar 

  3. Koziel, S., Cheng, Q.S., Bandler, J.W.: Space mapping. IEEE Microw. Mag. 9(6), 105–122 (2008)

    Article  Google Scholar 

  4. Forrester, A., Sobester, A., Keane, A.: Engineering Design via Surrogate Modeling: A Practical Guide. Wiley, Chichester (2008)

    Book  Google Scholar 

  5. Crombecq, K., Couckuyt, I., Gorissen, D., Dhaene, T.: Space-filling sequential design strategies for adaptive surrogate modelling. In: First International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering. Civil-Comp Press, Stirlingshire (2009)

    Google Scholar 

  6. Yelten, M.B., Zhu, T., Koziel, S., Franzon, P.D., Steer, M.B.: Demystifying surrogate modeling for circuits and systems. IEEE Circuits Syst. Mag. 12(1), 45–63 (2012)

    Article  Google Scholar 

  7. Gorissen, D., Crombecq, K., Couckuyt, I., Dhaene, T., Demeester, P.: A surrogate modeling and adaptive sampling toolbox for computer based design. J. Mach. Learn. Res. 11, 2051–2055 (2010)

    Google Scholar 

  8. Han, D., Kim, B.S., Chatterjee, A.: DSP-driven self-tuning of RF circuits for process induced performance variability. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 18(2), 305–314 (2010)

    Article  Google Scholar 

  9. Natarajan, V., Hunag, H., Makris, Y., Drineas, P.: BIST driven power conscious post-manufacture tuning of wireless transceiver systems using hardware-iterated gradient search. In: Asian Test Symposium (ATS), November 2009, pp. 243–248 (2009)

    Google Scholar 

  10. Zhu, T., Steer, M.B., Franzon, P.D.: Surrogate model-based self-calibrated design for process and temperature compensation in analog/RF circuits. IEEE Des. Test Comput. (2012). doi:10.1109/MDT.2012.2220332

    Google Scholar 

  11. IO Buffer Information Specification [Online]. http://www.vhdl.org/ibis/. Accessed 2 Feb 2009

  12. Zhu, T., Steer, M.B., Franzon, P.D.: Accurate and scalable IO buffer macromodel based on surrogate modeling. IEEE Trans. Compon. Packag. Manuf. Technol. 1(8), 1240–1249 (2011)

    Article  Google Scholar 

  13. IBIS Modeling Cookbook. http://www.vhdl.org/pub/ibis/cookbook/cookbook-v4.pdf. Accessed 1 May 2009

  14. Muranyi, A.: Accuracy of IBIS models with reactive loads. http://www.eda.org/pub/ibis/summits/feb06/muranyi2.pdf. Accessed 7 July 2009

  15. LaBonte, M., Muranyi, A.: IBIS Advanced Technology Modeling Task Group Work-achievement: Verilog-A element library HSPICE test. http://www.eda.org/ibis/macromodel_wip/archive/20070323/mikelabontecisco/. Accessed 7 July 2009

  16. Varma, A., Glaser, A., Lipa, S., Steer, M.B., Franzon, P.D.: The development of a macro-modeling tool to develop IBIS models. In: 12th IEEE Topical Meeting on Electrical Performance Electronic Packaging, Princeton, New Jersey, pp. 277–280 (2003)

    Google Scholar 

  17. Varma, A.K., Steer, M.B., Franzon, P.D.: Improving behavioral IO buffer modeling based on IBIS. IEEE Trans. Adv. Packaging 31(4), 711–721 (2008)

    Article  Google Scholar 

  18. Orshansky, M., Nassif, S.R., Boning, D.: Design for Manufacturability and Statistical Design: A Constructive Approach. Springer, New York (2008)

    Google Scholar 

  19. Saha, S.K.: Modeling process variability in scaled CMOS technology. IEEE Des. Test Comput. 27(2), 8–16 (2010)

    Article  Google Scholar 

  20. Yelten, M.B., Franzon, P.D., Steer, M.B.: Surrogate model-based analysis of analog circuits—Part I: variability analysis. IEEE Trans. Device Mater. Reliab. 11(3), 458–465 (2011)

    Article  Google Scholar 

  21. Morshed, T.H., Yang, W., Dunga, M.V., et al.: BSIM4.6.4 MOSFET model user’s manual. http://www-device.eecs.berkeley.edu/bsim/Files/BSIM4/BSIM470/BSIM470_Manual.pdf (2009). Accessed 1 October 2012

  22. Lophaven, S.N., Nielsen, H.B., Sondergaard, J.: A MATLAB Kriging toolbox 2.0. http://www2.compute.dtu.dk/~hbni/dace/dace.pdf (2002). Accessed 1 June 2009

  23. Yelten, M.B., Gard, K.G.: A novel design methodology for tunable low noise amplifiers. In: Wireless and Microwave Conference (WAMICON’09), Florida, pp. 1–5 (2009)

    Chapter  Google Scholar 

  24. Lin, C., Dunga, M.V., Lu, D.D., Niknejad, A.M., Hu, C.: Performance-aware corner model for design for manufacturing. IEEE Trans. Electron Devices 56(4), 595–600 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The chapter has the distribution statement “A” (Approved for Public Release, Distribution Unlimited). The views expressed are those of the authors and do not reflect the official policy or position of the Department of Defense or the U.S. Government. This work was supported by the Self-HEALing mixed-signal Integrated Circuits (HEALICs) program of the Defense Advanced Research Projects Agency (DARPA) and the prime contractor Raytheon Company (Contract number: FA8650-09-C-7925).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhu, T., Yelten, M.B., Steer, M.B., Franzon, P.D. (2013). Model-Based Variation-Aware Integrated Circuit Design. In: Koziel, S., Leifsson, L. (eds) Surrogate-Based Modeling and Optimization. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7551-4_8

Download citation

Publish with us

Policies and ethics