Advertisement

Physiological Changes in the Circulation after Birth

Chapter

Abstract

The purpose of this essay is to bring together some of the evidence which has accumulated and the theories which have been discussed over the last few centuries as to the nature of the changes in the circulation after birth. The evidence is lopsided, first, because so much of the experimental work is very recent (and therefore probably ill-digested), and second, because, although a good deal is known about the fetal and newborn lamb, little is known about other species. The use of the lamb for such studies is traditional. Fabricius (91) wrote that he had provided a precise anatomical description of the fetus of the lamb because the fetal lamb, as well as the fetal ox, had been singled out for description by the ancients; a fetal or newborn lamb was, no doubt, as easily come by in sixteenth century Padua as elsewhere today, and is of a size such that dissection and experiment are not difficult. So far as the relatively few observations on the human infant are concerned, it would appear that the changes in its circulation after birth are not unlike those in the lamb.

Keywords

Left Atrium Inferior Vena Umbilical Vein Pulmonary Vascular Resistance Pulmonary Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Abel, S., and W. F. Windle. Relation of the volume of pulmonary circulation to respiration at birth. Anat. Rec., 75: 451, 1939.CrossRefGoogle Scholar
  2. 2.
    Acheson, G. H., G. S. Dawes, and J. C. Mott. Oxygen consumption and arterial oxygen saturation in foetal and new-born lambs. J. Physiol. (Lond.), 135: 623, 1957.Google Scholar
  3. 3.
    Adams, F. H., and J. Lind. Physiologic studies on the cardiovascular status of normal newborn infants (with special reference to the ductus arteriosus). Pediatrics, 19: 431, 1957.PubMedGoogle Scholar
  4. 4.
    Alzamora, V., A. Rotta, G. Battilana, R. Abugattas, C. Rubio, J. Bouroncle, C. Zapata, E. Santa-Maria, T. Binder, R. Subiria, D. Paredes, B. Pando, and G. G. Graham. On the possible influence of great altitudes on the determination of certain cardiovascular anomalies. Pediatrics, 12: 259, 1953.PubMedGoogle Scholar
  5. 5.
    Amoroso, E. C., G. S. Dawes, and J. C. Mott. Patency of the ductus arteriosus in the newborn calf and foal. Brit. Heart J., 20: 92, 1958.PubMedCrossRefGoogle Scholar
  6. 6.
    Amoroso, E. C., G. S. Dawes, J. C. Mott, and B. R. Rennick. Occlusion of the ductus venosus in the mature foetal lamb. J. Physiol. (Lond.), 129: 64P, 1955.Google Scholar
  7. 7.
    Anrep, B. v. Ueber die Entwicklung der hemmenden Functionen bei Neugeborenen. Pflügers Arch. ges. Physiol., 21: 78, 1880.CrossRefGoogle Scholar
  8. 8.
    Anselmino, K. J., and F. Hoffmann. Die Ursachen des Icterus neonatorum. Arch. Gynäk., 143: 477, 1930.CrossRefGoogle Scholar
  9. 9.
    Aranzi, G. C. De humano foetu libellus. Bononiae, Rubrius, 1564.Google Scholar
  10. 10.
    Ardran, G. M., G. S. Dawes, M. M. L. Prichard, S. R. M. Reynolds, and D. G. Wyatt. The effect of ventilation of the foetal lungs upon the pulmonary circulation. J. Physiol. (Lond.), 118: 12, 1952.Google Scholar
  11. 11.
    Barclay, A. E., J. Barcroft, D. H. Barron, and K. J. Franklin. A radiographic demonstration of the circulation through the heart in the adult and in the foetus, and the identification of the ductus arteriosus. Brit. J. Radiol., 12: 505, 1939.CrossRefGoogle Scholar
  12. 12.
    Barclay, A. E., J. Barcroft, D. H. Barron, K. J. Franklin, and M. M. L. Prichard. Pulmonary circulation times before and after functional closure of the ductus arteriosus. J. Physiol. (Lond.), 101: 375, 1942.Google Scholar
  13. 13.
    Barclay, A. E., and K. J. Franklin. The time of functional closure of the foramen ovale in the lamb. J. Physiol. (Lond.), 94: 256, 1938.Google Scholar
  14. 14.
    Barclay, A. E., K. T. Franklin, and M. M. L. Prichard. The mechanism of closure of the ductus venosus. Brit. J. Radiol., 15: 66, 1942.CrossRefGoogle Scholar
  15. 15.
    Barclay, A. E., K. J. Franklin, and M. M. L. Prichard. The Foetal Circulation and Cardiovascular System, and the Changes that They Undergo at Birth. Oxford, Blackwell Scientific Publications, 1944.Google Scholar
  16. 16.
    Barcroft, J. Foetal circulation and respiration. Physiol. Rev., 16: 103, 1936.Google Scholar
  17. 17.
    Barcroft, J. Four phases of birth. Lancet, 11: 91, 1941.CrossRefGoogle Scholar
  18. 18.
    Barcroft, J. Researches on pre-natal life. Oxford, Blackwell Scientific Publications, 1946.Google Scholar
  19. 19.
    Barcroft, J., D. H. Barron, A. T. Cowie, and P. H. Forsham. The oxygen supply of the foetal brain of the sheep and the effect of asphyxia on foetal respiratory movement. J. Physiol. (Lond.), 97: 338, 1940.Google Scholar
  20. 20.
    Barcroft, J., D. H. Barron, K. Kramer, and G. A. Millikan. Factors which influence the oxygen supply of the brain at birth. Fiziol. Z. U.S.S.R., 24: 43, 1938.Google Scholar
  21. 2I.
    Barcroft, J., R. H. E. Elliott, L. B. Flexner, F. G. Hall, W. Herkel, E. F. Mccarthy, T. Mcclurkin, and M. Talaat. Conditions of foetal respiration in the goat. J. Physiol. (Lond.), 83: 192, 1934.Google Scholar
  22. 22.
    Barcroft, J., L. B. Flexner, and T. Mcclurkin. The output of the foetal heart in the goat. J. Physiol. (Lond.), 82: 498, 1934.Google Scholar
  23. 23.
    Barcroft, J., and T. Gotsev. Acquisition of blood by the foetus from the placenta at birth. J. Physiol. (Lond.), 90: 27P, 1937.Google Scholar
  24. 24.
    Barcroft, J., and J. A. Kennedy. The distribution of blood between the foetus and the placenta in sheep. J. Physiol. (Lond.), 95: 173, 1939.Google Scholar
  25. 25.
    Barcroft, J., J. A. Kennedy, and M. F. Mason. The relation of the vagus nerve to the ductus arteriosus in the guinea-pig. J. Physiol. (Lond.), 92: 1P, 1938.Google Scholar
  26. 26.
    Barcroft, J., K. Kramer, and G. A. Millikan. The oxygen in the carotid blood at birth. J. Physiol. (Lond.), 94: 571, 1939.Google Scholar
  27. 27.
    Barcroft, J., and D. S. Torrens. The output of the heart of the foetal sheep. J. Physiol. (Lond.), 105: 22P, 1946.Google Scholar
  28. 28.
    Barker, J. N., and H. G. Britton. Lactate and pyruvate metabolism in the foetal sheep. J. Physiol. (Lond.), 143: 50P, 1958.Google Scholar
  29. 29.
    Barron, D. H. The “sphincter” of the ductus venosus. Anat. Rec., 82: 398, 1958.Google Scholar
  30. 30.
    Barron, D. H. The changes in the fetal circulation at birth. Physiol. Rev., 24: 277, 1944.Google Scholar
  31. Barron, D. H., and F. C. Battaglia. The oxygen concentration gradient between the plasmas in the maternal and fetal capillaries of the placenta of the rabbit. Yale J. Biol. Med., 28:197, 1955–56.Google Scholar
  32. 32.
    Barron, D. H., and G. Meschia. A comparative study of the exchange of the respiratory gases across the placenta. Cold Spr. Harb. Symp. quant. Biol., 19: 93, 1954.CrossRefGoogle Scholar
  33. 33.
    Bartels, H., W. Moll, and J. Metcalfe. Physiology of gas exchange in the human placenta. Amer. J. Obst. Gynec., 84: 1714, 1962.Google Scholar
  34. 34.
    Bauer, D. J. Vagal reflexes appearing in asphyxia in rabbits at different ages. J. Physiol. (Lond.), 95: 187, 1939.Google Scholar
  35. 35.
    Beer, R., H. Bartels, and H. A. Raczkowski. Die Sauerstoffdissoziationskurve des fetalen Blutes und der Gasaustausch in der menschlichen Placenta. Pflügers Arch. ges. Physiol., 260: 306, 1955.CrossRefGoogle Scholar
  36. 36.
    Bert, P. Leçons sur la physiologie comparée de la respiration. Paris, Baillière, 1870.Google Scholar
  37. 37.
    Bertin, M. Sur le cours du sang dans le foie du foetus humain. Mém. Acad. Roy. Sci., (Paris), 323, 1753.Google Scholar
  38. 38.
    Bichat, X. Anatomie générale, appliqueé à la physiologie et à la médecine. Paris, Brosson, Gabon et Cie, 1801.Google Scholar
  39. 39.
    Born, G. V. R., G. S. Dawes, and J. C. Mott. The viability of premature lambs. J. Physiol. (Lond.), 130: 191, 1955.Google Scholar
  40. 4o.
    Born, G. V. R., G. S. Dawes, and J. C. Mott. Oxygen lack and autonomic nervous control of the foetal circulation in the lamb. J. Physiol. (Lond.), 134: 149, 1956.Google Scholar
  41. 41.
    Born, G. V. R., G. S. Dawes, J. C. Mott, and B. R. Rennick. The relief of central cyanosis caused by pulmonary arteriovenous shunts by construction of an artificial ductus arteriosus. J. Physiol. (Loud.), 130: 167, 1955.Google Scholar
  42. 42.
    Born, G. V. R., G. S. Dawes, J. C. Mott, and B. R. Rennick. The constriction of the ductus arteriosus caused by oxygen and by asphyxia in newborn lambs. J. Physiol. (Lond.), T32: 304, 1956.Google Scholar
  43. 43.
    Born, G. V. R., G. S. Dawes, J. C. Mott, and J. G. Widdicombe. Changes in the heart and lungs at birth. Cold Spr. Harb. Symp. quant. Biol., 19: 102, 1954.CrossRefGoogle Scholar
  44. 44.
    Borst, H. G., M. Mcgregor, J. L. Whittenberger, and E. Berglund. Influence of pulmonary arterial and left atrial pressures on pulmonary vascular resistance. Circulation Res., 4: 393, 1956.PubMedCrossRefGoogle Scholar
  45. 45.
    Boyd, J. D. The nerve supply of the mammalian ductus arteriosus. J. Anat. (Lond.), 75: 457, 1941.Google Scholar
  46. 46.
    BoYle, R. New pneumatical experiments about respiration. Phil. Trans. Roy. Soc., 5: 2011, 1670.Google Scholar
  47. 47.
    Brock, K. Temperature regulation in the newborn infant. Biol. Neonat., 3: 65, 1961.CrossRefGoogle Scholar
  48. 48.
    Burnard, E. D. A murmur from the ductus arteriosus in the newborn baby. Brit. med. J., 1: 806, 1958.PubMedCrossRefGoogle Scholar
  49. 49.
    Carlill, S. D., H. N. Duke, and M. Jones. Some observations on pulmonary haemodynamics in the cat. J. Physiol. (Lond.), 136: 112, 1957.Google Scholar
  50. 50.
    Christie, A. Normal closing time of the foramen ovale and ductus arteriosus. Amer. J. Dis. Child., 40: 323, 1930.Google Scholar
  51. 51.
    Clark, G. A. The development of blood-pressure reflexes. J. Physiol. (Lond.), 83: 229, 1934.Google Scholar
  52. 52.
    Clemetson, C. A. B., and J. Churchman. Oxygen and carbon dioxide content of umbilical artery and vein blood in toxaemic and normal pregnancy. J. Obstet. Gynaec. Brit. Emp., 60: 335, 1953.PubMedCrossRefGoogle Scholar
  53. 53.
    Cohnstein, J., and N. Zuntz. Untersuchungen über das Blut, den Kreislauf und die Athmung beim Säugethier-Fötus. Pflügers Arch. ges. Physiol., 34: 173, 1884.CrossRefGoogle Scholar
  54. 54.
    Cohnstein, J., and N. Zuntz. Weitere Untersuchungen zur Physiologie des Säugethier-Fötus. Pflügers Arch. ges. Physiol., 42: 342, 1888.CrossRefGoogle Scholar
  55. 55.
    Comline, R. S., and M. Silver. The release of adrenaline and noradrenaline from the adrenal glands of the foetal sheep. J. Physiol. (Lond.), 156: 424, 1961.Google Scholar
  56. 56.
    Condorelli, M., A. Dagianti, C. Polosa, and G. Giuliano. Sulla persistenza di un fisiologico corto circuito attraverso il foramine ovale nei primi giorni della vita extrauterina. Atti Soc. ital. Cardiol. Xix Congresso, 2: 165, 1957.Google Scholar
  57. 57.
    Cooper, K. E., and A. D. M. Greenfield. A method for measuring the blood flow in the umbilical vessels. J. Physiol. (Lond.), 108: 167, 1949.Google Scholar
  58. 58.
    Cooper, K. E., A. D. M. Greenfield, and A. ST. G. Huggett. The umbilical blood flow in the foetal sheep. J. Physiol. (Lond.), 108: 160, 1949.Google Scholar
  59. 59.
    Cross, K. W., G. S. Dawes, and J. C. MoTT. Anoxia, oxygen consumption and cardiac output in new-born lambs and adult sheep. J. Physiol. (Lond.), 146: 316, 1959.Google Scholar
  60. 6o.
    Cross, K. W., and J. L. Malcolm. Evidence of carotid body and sinus activity in new-born and foetal animals J. Physiol. (Lond.), 118: 10P, 1952.Google Scholar
  61. 61.
    Daly, I. DE B., and M. DE B. Daly. The effects of stimulation of the carotid body chemoreceptors on pulmonary vascular resistance in the dog. J. Physiol. (Lond.), 137: 436, 1957.Google Scholar
  62. 62.
    Danesino, V. L., S. R. M. Reynolds, and I. H. Rehman. Comparative histological structure of the human ductus arteriosus accord- ing to topography, age, and degree of constriction. Anat. Rec., 121: 801, 1955.PubMedCrossRefGoogle Scholar
  63. 63.
    Dawes, G. S. Changes in 02 supply within the foetal lamb. J. Physiol. (Lond.), 159: 44P, 1961.Google Scholar
  64. 64.
    Dawes, G. S. The umbilical circulation. Amer. J. Obstet. Gynec., 84: 1634, 1962.PubMedGoogle Scholar
  65. 65.
    Dawes, G. S., J. J. Handler, and J. C. Mott. Some cardiovascular responses in foetal, new-born and adult rabbits. J. Physiol. (Lond.), 139: 123, 1957.Google Scholar
  66. 66.
    Dawes, G. S., H. N. Jacobson, J. C. Mott, and H. J. Shelley. Some observations on foetal and new-born rhesus monkeys. J. Physiol. (Lond.), 152: 271, 1960.Google Scholar
  67. 67.
    Dawes, G. S., and J. C. Mott. Reflex respiratory activity in the newborn rabbit. J. Physiol. (Lond.), 145: 85, 1959.Google Scholar
  68. 68.
    Dawes, G. S., and J. C. Mott. The increase in oxygen consumption of the lamb after birth. J. Physiol. (Lond.), 146: 295, 1959.Google Scholar
  69. 69.
    Dawes, G. S., and J. C. Mott. The vascular tone of the foetal lung. J. Physiol. (Lond.), 164: 465, 1962.Google Scholar
  70. 70.
    Dawes, G. S., J. C. Mott, and B. R. Rennick. Some effects of adrenaline, noradrenaline and acetylcholine on the foetal circulation in the lamb. J. Physiol. (Lond.), 134: 139, 1956.Google Scholar
  71. 71.
    Dawes, G. S., J. C. Mott, and H. Shelley The importance of cardiac glycogen for the maintenance of life in foetal lambs and newborn animals during anoxia. J. Physiol. (Lond.), 146: 516, 1959.Google Scholar
  72. 72.
    Dawes, G. S., J. C. Mott, H. J. Shelley, and A. Stafford. The prolongation of survival in asphyxiated immature foetal lambs. J. Physiol. (Lond.), in press, 1963.Google Scholar
  73. 73.
    Dawes, G. S., J. C. Mott, and J. G. Widdicombe. The foetal circulation in the lamb. J. Physiol. (Lond.), 126: 563, 1954.Google Scholar
  74. 74.
    Dawes, G. S., J. C. Mott, and J. G. Widdicombe. The cardiac murmur from the patent ductus arteriosus in newborn lambs. J. Physiol. (Lond.), 128: 344, 1955.Google Scholar
  75. 75.
    Dawes, G. S., J. C. Mott, and J. G. Widdicombe. The patency of the ductus arteriosus in newborn lambs and its physiological consequences. J. Physiol. (Lond.), 128: 361, 1955.Google Scholar
  76. 76.
    Dawes, G. S., J. C. Mott, and J. G. Widdicombe. Closure of the foramen ovale in newborn lambs. J. Physiol. (Lond.), 128: 384, 1955.Google Scholar
  77. 77.
    Dawes, G. S., J. C. Mott, J. G. Widdicombe, and D. G. Wyatt. Changes in the lungs of the newborn lamb. J. Physiol. (Lond.), 121: 141, 1953.Google Scholar
  78. 78.
    Demarsh, Q. B., H. L. Alt, W. F. Windle, and D. S. Hillis. The effect of depriving the infant of its placental blood on the blood picture during the first week of life. J. Amer. med. Ass., 116: 2568, 1941.CrossRefGoogle Scholar
  79. 79.
    Dickson, A. D. The ductus venosus of the pig. J. Anat. (Lond.), 90: 143, 1956.Google Scholar
  80. 80.
    Donatelli, L. La funzionalita del seno-carotideo nel feto. Arch. int. Pharmacodyn., 64: 93, 1940.Google Scholar
  81. 81.
    Downing, S. E. Baroreceptor reflexes in new-born rabbits. J. Physiol. (Lond.), 150: 201, 1960.Google Scholar
  82. 82.
    Drake, J. Anthropologia Nova, or, a New System of Anatomy. The Appendix. London, W. and J. Innys, 1728.Google Scholar
  83. 83.
    Duke, H. N. Pulmonary vasomotor responses of isolated perfused cat lungs to anoxia and hypercapnia. Quart J. exp. Physiol., 36: 75, 1951.Google Scholar
  84. 84.
    Duke, H. N. The site of action of anoxia on the pulmonary blood vessels of the cat. J. Physiol. (Lond.), 125: 373, 1954.Google Scholar
  85. 85.
    Eastman, N. J. Foetal blood studies. I. The oxygen relationships of umbilical cord blood at birth. Johns Hopk. Hosp. Bull., 47: 221, 1930.Google Scholar
  86. 86.
    Eldridge, F. L., H. N. Hultgren, and M. E. Wigmore. The physiologic closure of the ductus arteriosus in the newborn infant. J. clin. Invest., 34: 987, 1955.PubMedCrossRefGoogle Scholar
  87. 87.
    Elliott, R. H., F. G. Hall, and A. ST. G. Huggett. The blood volume and oxygen capacity of the foetal blood in the goat. J. Physiol. (Lond.), 82: 160, 1934.Google Scholar
  88. 88.
    Emery, J. L. The distribution of haemopoietic foci in the infantile human liver. J. Anat. (Lond.), 90: 293, 1956.Google Scholar
  89. 89.
    Everett, N. B. Early postnatal changes in pulmonary blood volume of the guinea pig. Amer. J. Physiol., 169: 34, 1952.PubMedGoogle Scholar
  90. 90.
    Everett, N. B., and B. S. Simmons. The magnitude of increase in the pulmonary blood volume of the post-natal guinea pig. Anat. Rec., 119: 429, 1954.PubMedCrossRefGoogle Scholar
  91. 91.
    Fabricius, H. The Embryological Treatises. Tr. by H. B. Adelmann. Ithaca, N.Y., Cornell University Press, 1942.Google Scholar
  92. 92.
    Fazekas, J. F., F. A. D. Alexander, and H. E. Himwich. Tolerance of the newborn to anoxia. Amer. J. Physiol., 134: 281, 1941.Google Scholar
  93. 93.
    Feldman, W. M. The Principles of Ante-natal and Post-natal Child Physiology Pure and Applied. London, Longmans, Green, 1920.Google Scholar
  94. 94.
    Franklin, K. J. A survey of the growth of knowledge about certain parts of the foetal cardio-vascular apparatus, and about the foetal circulation, in man and some other mammals. Part I: Galen to Harvey. Ann. Sci., 5: 57, 1941.CrossRefGoogle Scholar
  95. 95.
    Franklin, K. J. Joseph Barcroft 1872–1947. Oxford, Blackwell Scientific Publications, 1953.Google Scholar
  96. 96.
    Franklin, K. J., E. C. Amoroso, A. E. Barclay, and M. M. L. Prichard. The valve of the foramen ovale and its relation to pulmonary vein entries. Vet. J., 98: 29, 1942.Google Scholar
  97. 97.
    Fromberg, C. Studien über dem Ductus arteriosus. Arb. path. Anat. Bakt., 9: 198, 1914.Google Scholar
  98. 98.
    Gairdner, D., J. Marks, J. D. Roscoe, and O. R. Brettall. The fluid shift from the vascular compartment immediately after birth. Arch. Dis. Childh., 33: 489, 1958.PubMedCrossRefGoogle Scholar
  99. 99.
    Gelineo, S. Développement ontogénétique de la thermorégulation chez le chien. Bull. Acad. Serbe Sci., 18: 97, 1957.Google Scholar
  100. 100.
    Rard, G. Le canal artériel. J. Anat. (Paris), 36: 1, 1900.Google Scholar
  101. 101.
    Rard, G. De l’oblitération du canal artériel, les théories et les faits. J. Anat. (Paris), 36: 323, 1900.Google Scholar
  102. 102.
    Gibson, G. A. Diseases of the Heart and Aorta, pp. 61, 303, 310–312. Edinburgh, Pentland, 1898.Google Scholar
  103. 103.
    Glass, H. G., F. F. Snyder, and E. Webster. The rate of decline in resistance to anoxia of rabbits, dogs and guinea pigs from the onset of viability to adult life. Amer. J. Physiol., 140: 609, 1944.Google Scholar
  104. 104.
    Gollwitzer-Meier, K. Anoxämie und Kreislauf. Pflügers Arch. ges. Physiol., 220: 434, 1928.Google Scholar
  105. 105.
    GRÄPer, L. Die anatomischen Veränderungen kurz nach der Geburt. Iii. Ductus Botalli, Z. Anat. Entw. Gesch., 61: 312, 1921.CrossRefGoogle Scholar
  106. 106.
    Grosser, O. Vergleichende Anatomie und Entwicklungsgeschichte der Eihaute und der Placenta mit besonderer Berücksichtigung des Menschen. Vienna, Wilhelm Braumüller, 1909.Google Scholar
  107. 107.
    Gruenwald, P. Degenerative changes in the right half of the liver resulting from intra-uterine anoxia. Amer. J. clin. Path., 19: 801, 1949.Google Scholar
  108. 108.
    Gruenwald, P. The pathology of perinatal distress. Arch. Path. (Chicago), 60: 150, 1955.Google Scholar
  109. 109.
    Gunther, M. The transfer of blood between baby and placenta in the minutes after birth. Lancet 1: 1277, 1957.CrossRefGoogle Scholar
  110. 110.
    Haller, A. v. Elementa physiologiae corporis humani. Lugduni Batavor, 1757.Google Scholar
  111. 111.
    Hamilton, W. F., R. A. Woodbury, and E. B. Woods. The relation between systemic and pulmonary blood pressures in the fetus. Amer. J. Physiol., 119: 206, 1937.Google Scholar
  112. 112.
    Handler, J. J. The foetal circulation and its changes at birth in some small laboratory animals. J. Physiol. (Lond.), 133: 202, 1956.Google Scholar
  113. 113.
    Harrison, T. R., and A. Blalock. The regulation of circulation. VI. The effects of severe anoxemia of short duration on the cardiac output of morphinized dogs and trained narcotized dogs. Amer. J. Physiol., 80: 169, 1927.Google Scholar
  114. 114.
    Harvey, W. Exercitatio anatomica de motu cordis et sanguins in animalibus. Francofurti, Fitzeri, 1628.Google Scholar
  115. 115.
    Haselhorst, G., and A. Allmeling. Die Gewichtszunahme von Neugeborenen infolge postnataler Transfusion. Z. Geburtsh. Gynäk., 98: 103, 1930.Google Scholar
  116. I16.
    Haselhorst, G., and K. Stromberger. Ober den Gasgehalt des Nabelschnurblutes vor und nach der Geburt des Kindes und über den Gasaustausch in der Plazenta. Z. Geburtsh. Gynäk., 100: 48, 1931.Google Scholar
  117. 117.
    Hayek, H. V. Der funktionelle Bau der Nabelarterien und des Ductus Botalli. Z. Anat. Entw. Gesch., 105: 15, 1935.CrossRefGoogle Scholar
  118. 118.
    Heinrici, G. Die Zählebigkeit des Herzens Neugeborener. Z. Biol., 26: 190, 1890.Google Scholar
  119. 119.
    Hill, J. R. The oxygen consumption of new-born and adult mammals. Its dependence on the oxygen tension in the inspired air and on the environmental temperature. J. Physiol. (Lond.), 149: 346, 1959.Google Scholar
  120. 120.
    Holmes, R. L. Some features of the ductus arteriosus. J. Anat. (Lond.), 92: 304, 1958.Google Scholar
  121. 121.
    Houston, C. S., and R. L. Riley. Respiratory and circulatory changes during acclimatization to high altitude. Amer. J. Physiol., 149: 565, 1947.PubMedGoogle Scholar
  122. 122.
    Huggett, A. ST. G. Foetal blood-gas tensions and gas transfusion through the placenta of the goat. J. Physiol. (Lond.), 62: 373, 1927.Google Scholar
  123. 123.
    Ingiulla, W. Ricerche sperimentali sulla funzione vasomotoria del feto. Atti Soc. ital. Ostet. Ginec., 36: 224, 1940.Google Scholar
  124. 124.
    Jager, B. V., and O. J. Wollenman, JR. An anatomical study of the closure of the ductus arteriosus. Amer. J. Path., 18: 595, 1942.PubMedGoogle Scholar
  125. 125.
    Jambs, L. S. In Adaptation to Extrauterine Life, Report of the Thirty-first Ross Conference on Pediatric Research. Columbus, Ross Laboratories, 1959.Google Scholar
  126. 126.
    James, L. S., and R. D. Rowe. The pattern of response of pulmonary and systemic arterial pressures in newborn and older infants to short periods of hypoxia. J. Pediat., 51: 5, 1957.PubMedCrossRefGoogle Scholar
  127. 127.
    James, L. S., I. M. Weisbrot, C. E. Prince, D. A. Holaday, and V. Apgar. The acid-base status of human infants in relation to birth asphyxia and the onset of respiration. J. Pediat., 52: 379, 1958.PubMedCrossRefGoogle Scholar
  128. 128.
    JosT, A. Expériences de décapitation de l’embryon de lapin. C.R. Acad. Sci. (Paris), 225: 322, 1947.Google Scholar
  129. 129.
    JosT, A. Hormonal factors in the development of the fetus. Cold Spr. Harb. Symp. quant. Biol., 19: 167, 1954.CrossRefGoogle Scholar
  130. 130.
    Kabat, H. The greater resistance of very young animals to arrest of the brain circulation. Amer. J. Physiol., 130: 588, 1940.Google Scholar
  131. 131.
    Kaiser, I. H., and J. N. Cummings. Hydrogen ion and hemoglobin concentration, carbon dioxide and oxygen content of blood of the pregnant ewe and fetal lamb. J. appl. Physiol., 10: 484, 1957.PubMedGoogle Scholar
  132. 132.
    Keen, E. N. The postnatal development of the human cardiac ventricles. J. Anat. (Lond.), 89: 484, 1955.Google Scholar
  133. 133.
    Kellogg, H. B. Time of onset of vagal function in the heart of mammals. Proc. Soc. exp. Biol. (N.Y.), 24: 839, 1927.Google Scholar
  134. 134.
    Kellogg, H. B. The course of the blood flow through the fetal mammalian heart. Amer. J. Anat., 42: 443, 1928.CrossRefGoogle Scholar
  135. 135.
    Kellogg, H. B. Studies on the fetal circulation of mammals. Amer. J. Physiol., 91: 637, 1930.Google Scholar
  136. 136.
    Kennedy, J. A., and S. L. Clark. Observations on the ductus arteriosus of the guinea pig in relation to its method of closure. Anat. Rec., 79: 349, 1941.CrossRefGoogle Scholar
  137. 137.
    Kennedy, J. A., and S. L. Clark. Observations on the physiological reactions of the ductus arteriosus. Amer. J. Physiol., 136: 140, 1942.Google Scholar
  138. 138.
    Kilian, H. F. Ueber den Kreislauf des Blutes im Kinde, welches noch nicht geathmet hat. Karlsruhe, Chr. Fr. Müller, 1826.Google Scholar
  139. 139.
    Kirstein, F. Der Verschluss des Ductus arteriosus (Botalli). Arch. Gynäk., 90: 303, 1910.CrossRefGoogle Scholar
  140. 140.
    Klages, C. Anatomische Untersuchungen des Gefässverlaufs der Leber neugeborener Schafe und geburtsreifer Rinder. Morph. Jb., 68: 301, 1931.Google Scholar
  141. 141.
    Langer, C. Zur Anatomie der fötalen Kreislaufsorgane. Z. Ges. Aertze Wien,. 13: 328, 1857.Google Scholar
  142. 142.
    Leech, C. B. Congenital heart disease. Clinical analysis of seventy-five cases from the Johns Hopkins Hospital. J. Pediat., 7: 802, 1935.CrossRefGoogle Scholar
  143. 143.
    Lind, J., and C. Wegelius. Human fetal circulation: changes in the cardiovascular system at birth and disturbances in the post-natal closure of the foramen ovale and ductus arteriosus. Cold Spr. Harb. Symp. quant. Biol., 19: 109, 1954.CrossRefGoogle Scholar
  144. 144.
    Linzenmeier, G. Der Verschluss des Ductus arteriosus Botalli nach der Geburt des Kindes. Z. Geburtsh. Gynäk., 76: 217, 1914.Google Scholar
  145. 145.
    Lower, R. Tractatus de Corde. Item de motu et colore sanguinis et chyli in eum transitu. Londini, Jacobi Allestry, 1669.Google Scholar
  146. 146.
    Macklin, C. C. Evidences of increase in the capacity of the pulmonary arteries and veins of dogs, cats and rabbits during inflation of the freshly excised lung. Rev. canad. Biol., 5: 199, 1946.PubMedGoogle Scholar
  147. 147.
    Mcintyre, D. G., and H. E. Ederstrom. Metabolic factors in the development of homeothermy in dogs. Amer. J. Physiol., 194: 293, 1958.PubMedGoogle Scholar
  148. 148.
    Melka, J. Beitrag zur Kenntnis der Morphologie und Obliteration des Ductus arteriosus Botalli. Anat. Anz., 61: 348, 1926.Google Scholar
  149. 149.
    Meyer, E. Phénomènes d’inhibition cardio-vasculaire chez le nouveau-né. Arch. Physiol. norm. path., ser. V, 5: 475, 1893.Google Scholar
  150. 150.
    Mitchell, S. C. The ductus arteriosus in the neonatal period. J. Pediat., 51: 12, 1957.PubMedCrossRefGoogle Scholar
  151. 151.
    Mount, L. E. The metabolic rate of the new-born pig in relation to environmental temperature and age. J. Physiol. (Loud.), 147: 333, 1959.Google Scholar
  152. 152.
    Mulherin, W. A., and J. Krafka, JR. Intravascular clotting in abandoned fetal channels in the newborn. J. Pediat., 9: 318, 1936.CrossRefGoogle Scholar
  153. 153.
    Nisell, O. Pulmonary reactions to anoxia and carbon dioxide with regard to their possible significance for new-born infants. In Symposium on Anoxia of the New-born Infant; p. 135. Oxford, Blackwell Scientific Publications, 1953.Google Scholar
  154. 154.
    Opdyke, D. F., J. Duomarco, W. H. Dillon, H. Schreiber, R. C. Little, and R. D. Seely. Study of simultaneous right and left atrial pressure pulses under normal and experimentally altered conditions. Amer. J. Physiol., 154: 258, 1948.PubMedGoogle Scholar
  155. Patten, B. M. The changes in circulation following birth. Amer. Heart J., 6:192, 193o.Google Scholar
  156. 156.
    Patten, B. M. The closure of the foramen ovale. Amer. J. Anat., 48: 19, 1931.CrossRefGoogle Scholar
  157. 157.
    Patten, B. M., and K. Toulmin Certain measurements of the foetal heart and their significance. Anat. Rec., 45: 235, 1930.Google Scholar
  158. 158.
    Pohlman, A. G. The fetal circulation through the heart. A review of the more important theories, together with a preliminary report on personal findings. Johns Hopk. Hosp. Bull., 18: 409, 1907.Google Scholar
  159. 159.
    Pohlman, A. G. The course of the blood through the heart of the fetal mammal, with a note on the reptilian and amphibian circulations. Anat. Rec., 3: 75, 1909.CrossRefGoogle Scholar
  160. 160.
    Prec, K. J., and D. E. Cassels. Dye dilution curves and cardiac output in newborn infants. Circulation, 11: 789, 1955.PubMedCrossRefGoogle Scholar
  161. 161.
    Prystowsky, H. Fetal blood studies. Vii. The oxygen pressure gradient between the maternal and fetal bloods of the human in normal and abnormal pregnancy. Johns Hopk. Hosp. Bull., 101: 48, 1957.Google Scholar
  162. 162.
    Von Rauchfuss, C. Ueber Thrombose des Ductus arteriosus Botalli. Virchows Arch. path. Anat., 17: 376, 1859.Google Scholar
  163. 163.
    Record, R. G., and T. McKeown. Observations relating to the aetiology of patent ductus arteriosus. Brit. Heart J., 15: 376, 1953.PubMedCrossRefGoogle Scholar
  164. 164.
    Record, R. G., and T. McKeown. The effect of reduced atmospheric pressure on closure of the ductus arteriosus in the guinea pig. Clin. Sci., 14: 225, 1955.PubMedGoogle Scholar
  165. 165.
    Reiss, M., and F. Haurowitz. Über das Verhalten junger und alter Tiere bei Erstickung. Klin. Wschr., 8: 743, 1929.CrossRefGoogle Scholar
  166. 166.
    Reynolds, S. R. M. Arterial and venous pressures in umbilical cord of the sheep and nature of venous return from the placenta. Amer. J. Physiol., 166: 25, 1951.PubMedGoogle Scholar
  167. 167.
    Reynolds, S. R. M. The fetal and neonatal pulmonary vasculature in the guinea pig in relation to hemodynamic changes at birth. Amer. J. Anat., 98: 97, 1956.PubMedCrossRefGoogle Scholar
  168. 168.
    Ribemont, A. Recherches sur la tension du sang dans les vaisseaux du foetus et du nouveau-né à propos du moment ou l’on doit lier le cordon ombilical. Arch. tocol., 6: 577, 1879.Google Scholar
  169. 169.
    Roeder, H. Die Histogenese des arteriellen Ganges. Ein Beitrag zur Entwicklungsmechanik der Fötalwege. Arch. Kinderheilk., 331: 147, 1902.Google Scholar
  170. 170.
    Room, G., and S. SJÖStedt. Oxygen saturation in the umbilical cord. Acta obstet. gynec. scand., 34: 442, 1955.CrossRefGoogle Scholar
  171. 171.
    Rossdale, P. D., and L. W. Mahaffey. Parturition in the thoroughbred mare with particular reference to blood deprivation in the newborn. Vet. Rec., 70: 142, 1958.Google Scholar
  172. 172.
    RowE, R. D., and L. S. James. The normal pulmonary arterial pressure during the first year of life. J. Pediat., 51: 1, 1957.Google Scholar
  173. 173.
    Sabatier, R. B. Mémoire sur les organes de la circulation du sang du foetus. Mém. Acad. roy. Sci. (Paris), 198, 1778.Google Scholar
  174. 174.
    Sabatier, R. B. Mémoire sur les changements qui arrivent aux organes de la circulation du foetus, lorsqu’il a commencé à respirer. Mém. Inst. nat. (Paris), 3: 337, 1802.Google Scholar
  175. 175.
    Scammon, R. E., and E. H. Morris. On the time of the post-natal obliteration of the fetal blood-passages (foramen ovale, ductus arteriosus, ductus venosus). Anat. Rec., 15: 165, 1918.CrossRefGoogle Scholar
  176. 176.
    Schaeffer, J. P. The behaviour of elastic tissue in the post-fetal occlusion and obliteration of the ductus arteriosus (Botalli) in Sus scrofa. J. exp. Med., 19: 129, 1914.PubMedCrossRefGoogle Scholar
  177. 177.
    Schanz, F. Ueber den mechanischen Verschluss des Ductus arteriosus. Pflügers Arch. ges. Physiol., 44: 239, 1889.CrossRefGoogle Scholar
  178. 178.
    Scharfe, H. Der Ductus Botalli. Beiträge zur Physiologie und Pathologie des Verschlusses. Beitr. Geburtsh. Gynäk., 3: 368, 1900.Google Scholar
  179. 179.
    Schultze, B. S. Der Scheintod Neugeborener. Jena, Mauke, 1871.Google Scholar
  180. 180.
    Shelley, H. S. Glycogen reserves and their changes at birth. Brit. med. Bull., 17: 137, 1961.Google Scholar
  181. 181.
    Sinha, T. P. Increase in pulmonary blood volume during early postnatal life. Anat. Rec., 106: 599, 1950.PubMedCrossRefGoogle Scholar
  182. 182.
    Smith, C. A. The effect of obstetrical anesthesia upon the oxygenation of maternal and fetal blood with particular reference to cyclopropane. Surg. Gynec. Obstet., 69: 584, 1939.Google Scholar
  183. 183.
    Smith, C. A. The Physiology of the Newborn Infant. znd ed. Springfield, Ill., Thomas, 1951.Google Scholar
  184. 184.
    Soltmann, O. Ueber das Hemmungsnervensystem der Neugebornen. Jb. Kinderheilk, 11: 101, 1887.Google Scholar
  185. 185.
    Stafford, A., and J. A. C. Weatherall. The survival of young rats in nitrogen. J. Physiol. (Lond.), 153: 457, 1960.Google Scholar
  186. 186.
    Stahlman, M. T., R. E. Merril, and V. S. Lequire. Cardiovascular adjustments in normal newborn lambs. Amer. J. Dis. Child., 104: 360, 1962.PubMedGoogle Scholar
  187. 187.
    Stienon, L. Sur la fermeture du canal de Botallo. Arch. Biol. (Paris), 97: 801, 1912.Google Scholar
  188. 188.
    Strassman, P. Anatomische und physiologische Untersuchungen über den Blutkreislauf beim Neugebornen. Arch. Gynäk., 45: 393, 1894.CrossRefGoogle Scholar
  189. 189.
    Swann, H. G., J. J. Christian, and C. Hamilton. The process of anoxic death in newborn pups. Surg. Gynec. Obstet., 99: 5, 1954.PubMedGoogle Scholar
  190. 190.
    Swensson, A. Beitrag zur Kenntnis von dem histologischen Bau und dem postembryonalen Verschluss des Ductus arteriosus Botalli. Z. mikr.- anat. Forsch., 46: 275, 1939.Google Scholar
  191. 191.
    Taylor, P. M. Oxygen consumption in new-born rats. J. Physiol. (Lond.), 154: 153, 1960.Google Scholar
  192. 192.
    Van Harreveld, A., and F. E. Russell. Postnatal development of a left-right atrial pressure gradient. Amer. J. Physiol., 186: 521, 1956.Google Scholar
  193. 193.
    Virchow, R. Die Thrombosen der Neugebornen. In Gesammelte Abhandlungen zur wissenschaftlichen Medicin. Frankfurt, Meidinger, 1856, p. 591.Google Scholar
  194. 194.
    Walker, J. Foetal anoxia. J. Obstet. Gyneac. Brit. Emp. 61: 162, 1954.CrossRefGoogle Scholar
  195. 195.
    Walkhoff, F. Das Gewebe des Ductus arteriosus und die Obliteration desselben. Z. rat. Med., 36: 109, 1869.Google Scholar
  196. 196.
    Wells, H. G. Persistent patency of the ductus arteriosus. Amer. J. med. Sci., 136: 381, 1908.CrossRefGoogle Scholar
  197. 197.
    Wilson, E. E., W. F. Windle, and H. L. Alt. Deprivation of placental blood as a cause of iron deficiency in infants. Amer. J. Dis. Child, 62: 320, 1941.Google Scholar
  198. 198.
    Wilson, R. R. Post-mortem observations on contraction of the human ductus arteriosus. Brit. med. J., 1: 810, 1958.PubMedCrossRefGoogle Scholar
  199. 199.
    Windle, W. F. Physiology of the Fetus. Philadelphia, Saunders, 1940.Google Scholar
  200. 200.
    Windle, W. F., and R. F. Becker. The course of the blood through the fetal heart. An experimental study in the cat and guinea pig. Anat. Rec., 77: 417, 1940.CrossRefGoogle Scholar
  201. 201.
    Wolff, C. F. De foramine ovali, eiusque usu, in dirigendo motu sanguinis. Observationes novae. Novi Commentarii Acad. Sci. Imp. Petropolitanae, 20: 357, 1776.Google Scholar
  202. 202.
    Wulf, H. Der Gasaustausch in der reifen Plazenta des Menschen. Z. Geburtsh. Gynäk., 158: 134, 1962.Google Scholar
  203. 203.
    Zietzschmann, O. Lehrbuch der Entwicklungsgeschichte der Haustiere. Berlin, Schoetz, 1924.Google Scholar

Copyright information

© American Physiological Society 1982

Authors and Affiliations

  1. 1.Columbia University College of Physicians and SurgeonsNew YorkUSA

Personalised recommendations